WHMHMHMHMHMHMUMT Molecular Orbitals in Inorganic Chemistry

Prof. P. Hunt
p.hunt@imperial.ac.uk
Rm 110F (MSRH)
http://www.ch.ic.ac.uk/hunt/

Resources

Use Socrative

- www_socrative.com
- student login!!
- join

WHZ9KBWC3

- wait for me to start the test quiz
- complete the quiz!!

Resources

- notes AND slides
- link to panopto when it becomes available
- model answers to "in class activity" questions
- model answers to self-study problems / exam prep
- optional background support for beginners
- questions answered section (from student queries)
- files for visualising MOs
- optional material to for experts
- links to interesting people and web-sites
- links to relevant research papers on MOs

OReading

- OPTIONAL background material, supports lectures adds more details and explanation
- some elective reading is advisable
- if you are interested in a wider perspective and more complex problems see me!

Recommended Text

- Kieran Molloy, Group Theory for Chemists, Harwood Publishing, Chichester.
- only specific sections!!

Group Theory for Chemists
Fundamental Theory and Applications KIERAN C. MOLLOY

- type "Hunt theoretical chemistry" into search engine
- top hit should be my website
http://www.huntresearchgroup.org.uk/
- click on teaching
- under Year Two
- find Molecular Orbitals in Inorganic Chemistry
- goto Lecture 1
- click on "slides as presented in the lecture"
your website is a god send when you miss out one little part or need something clarified

I really like that model answers to the tutorial problems are online. This was very helpful because I could look through them myself

Hunt Research Group
 Teaching

Teaching	
Year One	al Chemistry
Year Tw	meb
Year Two - Motecular Orbitals in Inoraganic Cremistor - Spectroscopy and Charasteristion ill	periodic table of videos from the University of Nottingham, short videos about each element of the periodic table
- Yeer 2 Computational Coremistar Lat	demonstration, photos and some live vidio clips
Year Three - Year 3 Comosutational Chemistry Las	Comoound Interess a blog which explains ryday items, for example glow sticks, tomatoes.

Lecture 1

(updated for 2016)

1. slides from the lecture for printing: pdf
2. slides as presented in the lecture: high resolution pdf 19.1 MB
3. slides as presented in the lecture: low resolution pdf 1.4 MB good for moble devices
4. flow chart and character tables handouts (bring to class every week!):

- flow-chart
- character tables

6. resources related to this lecture optional

- a bit more detail on how to find the characters for degenerate representations pdf
- how to find the improper rotations for the $\mathrm{D}_{3 \mathrm{~h}}$ point group pdf
- extra for experts, improper rotations for the O_{h} point group pdf
- Part 1: Symmetry from Group Theory for Chemists
- if you like doing things in a problem based format the following is very good Programme 1: Symmetry Elements and Operations from Molecular Symmetry and
Group Theory (2nd Edition), Alan Vincent, John Wiley \& Sons Itd Chiche Sons Ltd, Chichester,
- imperial chemistry department symmetry web-site has 3D movable examples of
symmetry elements for water good
famous theoreticians: optional
- in 2009 Prof. Eisenstein a theoretical chemist recieved the American Chemical
- Emily Carter Professor in Energy and the Environment Princeton University and
- Elected as a Fellow of the American Chemical Society in 2012
- Sharon Hammes-Schiffer elected as a Member of the National Academy of
- the nobel prize in chemisty 1981 went to Fukui and Hoffmann
- the nobel prize in chemisty 1981 went to Fukui and Hoffman
- the nobel prize in physics 2008 went to Yoichiro Nambu, Makoto Kobayashi,
- Toshihide Maskawa
- the nobel prize in chemisty 2013 went to Martin Karplus, Michael Levitt, Arieh

Who was Christopher Longuet-Higgins?

Qintroduction

- why study MO theory
- what this course is about

Orevision: symmetry

- symmetry operations, elements and operators
- point groups and flow chart

Ocharacter tables

- what is a character table?
- using a character table
- multiple symmetry operations
- degenerate symmetry labels
- improper rotations
- equivalent symmetry operations

Why Study MO Theory?

O Supersedes VSEPR theory

- valence shell electron pair repulsion theory
- VSEPR predicts O_{2} diamagnetic (paired electrons) the experimental evidence is that O_{2} is paramagnetic (unpaired electrons)

O Supersedes Crystal Field Theory

- dAOs are split by the field of the ligands
- negative ligands should produce a larger $\Delta_{\text {oct }}$
- but experimentally it is found that F - ligands have a smaller $\Delta_{\text {oct }}$ than $\mathrm{H}_{2} \mathrm{O}$

O Required for "odd" bonding situations

- structure of ethane is well known, diborane $\mathrm{B}_{2} \mathrm{H}_{6}$ was assumed to be similar!
- while a 2nd year undergraduate, H. Christopher Longuet-Higgins proposed the structure of diborane together with his tutor R. Bell

The Course

Q Learning how to describe and use symmetry
Q Learning how to construct MO diagrams
Q Learning how to interpret MO diagrams
Q Learning how MO theory can be used to understand and predict the bonding, structure and reactivity of molecules

O All relating back to other chemistry courses

- Main group chemistry, Organometallic and Coordination chemistry, Crystal and Molecular Architecture,
- Theoretical Methods, Quantum Mechanics, Electronic Properties of Solids

O Labs and workshops

- computational chemistry labs
- your final year research project

ONobel prize in 1981

- Kenichi Fukui
- Roald Hoffmann

O Nobel prize in 1998

- Walter Kohn
"orbital symmetry interpretation of chemical reactions"
for the development of modern computational methods
- John Pople

QACS Organometallic Chemistry Award

- Odile Eisenstein
specialises in the use of quantum theoretical methods for the study of catalytic mechanisms

O Nobel prize in 2013

- Martin Karplus
- Michael Levitt
- Arieh Warshel

Odile Eisenstein, reproduced with permission

"development of multiscale models for complex chemical systems"

Symmetry

Were have you met symmetry already?

- equivalent H or C atoms in NMR
- chirality
- labelling of atomic orbitals
- s and p orbitals
- octahedral transition metal complexes
- isomerisation: cis/trans fac/mer staggered/eclipsed chair/boat

O Where understanding symmetry is crucial

- MO diagrams $=>$ photoelectron spectrum
- determines form of HOMO and LUMO $\Rightarrow>$ reactivity
- stereo-electronic effects => organic mechanisms
- symmetry breaking $\Rightarrow>$ Jahn-Teller distortions
\bullet determines allowed vibrations $\Rightarrow>$ IR and Raman spectrum
- determines electronic interactions $=>$ dipole moment, UV-vis spectrum

O Examples

- $\mathrm{C}_{2 \mathrm{v}} \mathrm{D}_{\text {wh }} \mathrm{T}_{\mathrm{d}}$

Q Use the flow chart from last year

- available in your exam

O Determined by the number and type of symmetry operations

Symmetry Operations

\bigcirc Physical act of performing a

motion

- example physical rotation of water around C_{2} axis
- if nuclei are labeled specific atoms move
- H_{a} and H_{b} exchange places (O rotates in place)

O Initial and final states are identical with respect to nuclei

C_{2} operation

M M M M M M
 Symmetry Elements

Q Symmetry elements

- objects about which symmetry operations occur
- rotation axis
- reflection plane
see Figure 8 in your notes for revision of different symmetry elements
- inversion point

O Include axial information

- always put an axis definition on your diagram
- correctly orientate the axial system
- z -axis is aligned along the highest n -axis
- watch out for diatomics!
- z-axis is along the bond (why?)

Fig. 8

Symmetry operator

- mathematical representation of the action
- operator "acts on" the wavefunction or molecule (hence brackets)

Q Advanced (not required)

- operator is a matrix
- ie C_{2} rotation matrix

Same Notation!

OSymmetry operation

- the act of performing a motion

O Symmetry elements

- objects about with symmetry operations occur

OSymmetry operator

- mathematical representation of the action

Fig. 7

Fig. 8
C_{2} operator

$$
C_{2}\left[\psi_{H_{2} O}\right]=\psi_{H_{2} O}^{\prime}
$$

Fig. 9

OSymmetry elements for $\mathrm{H}_{2} \mathrm{O}$:

- identity E
- C_{2} rotation axis
- reflection plane $\sigma_{v}(y z)$
- reflection plane $\sigma_{v}(x z)$

O Flow chart for identifying the point group

- is the molecule linear? NO

Fig. 10

- are there two or more $\mathrm{C}_{\mathrm{n}} \mathrm{N}>2$? NO
- is there a C_{n} ? YES
- are there nC_{2} perpendicular to C_{n} ? NO
- is there a σ_{h} ? NO
- is there a σ_{v} ? YES

socrative quiz!

OThe question was part of an exam and related to a MO diagram for O_{2}

- What is the point group of this molecule?
- The z-axis should align ...
- The principle axis is ...

In-Class Activity

Qhat is wrong with this answer to part of the 2006 exam?

- wrong point group
- wrong principle axis

What is the point group of this molecule?

- point group: $\mathrm{D}_{\infty h}$

O The z-axis should align ...

- along the bond
- with the principle axis of the molecule

OThe principle axis is ...

- principle axis is highest C axis, C_{∞} axis

Q The question"Given this molecule of cis-H ${ }_{4}$ clearly indicate all of the symmetry elements on a diagram. (4 marks)"

Fig. 12

H
 In-Class Activity

O What is wrong with this answer?"

what is wrong?

- does not include an axis definition
- does not include axial information in element names
what is correct?
- all of the symmetry elements identified and drawn on the molecule
- molecule is correctly orientated
- diagram is tidy and clear

Character Tables

Q key part of this course is learning how to use character tables

- determine symmetry of MOs
- other uses not covered in this course ... but covered next year in

Advanced Spectroscopy

Ocharacter table handout

- includes character tables of all main symmetry groups
- a copy of these character tables will be available to you in the exam
$\mathrm{C}_{2 \mathrm{v}}$ character table

$C_{2 v}$	E	C_{2}	$\sigma_{\mathrm{v}}(\mathrm{xz})$	$\sigma_{\mathrm{v}}^{\prime}(\mathrm{yz})$	$\mathrm{h}=4$
$\mathrm{~A}_{1}$	1	1	1	1	z
A_{2}	1	1	-1	-1	
$\mathrm{~B}_{1}$	1	-1	1	-1	x
B_{2}	1	-1	-1	1	y

Character Table Components

O best way to understand character table is to use it
Oexample: lowest energy MO of water

- s atomic orbital on each of the H and O atoms
- $\mathrm{H}_{2} \mathrm{O}$ has $\mathrm{C}_{2 \mathrm{v}}$ symmetry so use $\mathrm{C}_{2 v}$ character table
start by constructing a representation table:

Q Determine how the orbital transforms under each symmetry operation of the group

- orbital is unchanged \Rightarrow character=1
- a sign change $=>$ character $=-1$
symbol representing a character

$$
\begin{array}{|r|ll}
\\
\Gamma\left\{\begin{array}{rl}
C_{2 v} & \mathrm{E} \\
\mathrm{O}_{0} & \mathrm{C}_{2} \sigma_{\mathrm{v}}(\mathrm{xz}) \\
\mathbf{1}^{2}
\end{array}\right.
\end{array}
$$

Q Determine how the orbital transforms under each symmetry operation of the group

- orbital is unchanged $=>$ character $=1$
- a sign change $=>$ character $=-1$

$$
\Gamma\left\{\begin{array}{r|rl}
C_{2 v} & E & C_{2} \sigma_{y}(\mathrm{xz}) \\
\mathrm{O}_{\mathrm{O}} & \sigma_{\mathrm{v}}^{\prime}(\mathrm{yz}) \\
\hline
\end{array} \mathbf{1}^{2}\right.
$$

Q Determine how the orbital transforms under each symmetry operation of the group

- orbital is unchanged \Rightarrow character=1
- a sign change $=>$ character $=-1$

$$
\begin{array}{rl|lll}
\\
\Gamma\left\{\sigma^{C_{2 v}}\right. & \mathrm{E} & \mathrm{E} & \mathrm{C}_{2} & \sigma_{\mathrm{v}}(\mathrm{xz}) \\
\hline & 1 & \sigma_{\mathrm{v}}^{\prime}(\mathrm{yz}) \\
\hline
\end{array}
$$

Fig. 16

Q Determine how the orbital transforms under each symmetry operation of the group

- orbital is unchanged \Rightarrow character=1
- a sign change $=>$ character $=-1$

No change under $\sigma_{v} \square \chi \chi=1$

$$
\begin{array}{|r|cccc|}
\hline C_{2 v} & \mathrm{E} & \mathrm{C}_{2} & \sigma_{\mathrm{v}}(\mathrm{xz}) & \sigma_{\mathrm{v}}^{\prime}(\mathrm{yz}) \\
\left.\hline \mathrm{O}_{\mathrm{O}}\right\}^{\prime} & 1 & 1 & 1 & 1
\end{array}
$$

Using Character Tables

same set of characters as the irreducible representation a_{1}

Use lower case when

 for the symmetry label of MOs $\mathrm{A}_{1}->\mathrm{a}_{1}$upper case letters are reserved for vibrations and states

$C_{2 v}$	E	C_{2}	$\sigma_{\mathrm{v}}(\mathrm{xz})$	$\sigma_{\mathrm{v}}{ }^{\prime}(\mathrm{yz})$	$\mathrm{h}=4$
$\mathrm{~A}_{1}$	1	1	1	1	z
A_{2}	1	1	-1	-1	
$\mathrm{~B}_{1}$	1	-1	1	-1	x
B_{2}	1	-1	-1	1	y

Q the second highest energy MO for water

- out of phase s atomic orbitals on the hydrogen atoms and a p_{x} atomic orbital on the oxygen atom

your turn:

Fig. 18

\[

\]

1
 In-Class Activity

$O_{v}(x z) \sim_{0}$
this orbital has b_{1} symmetry

$$
x=-1
$$

$\mathrm{D}_{3 \mathrm{~h}}$ Character Table

Find the $\mathrm{D}_{3 \mathrm{~h}}$ character table in your set of Character Tables

D 3 h Character Table

Q Show by example
O Use simple molecule
Q H_{3} or $\mathrm{H}_{3}{ }^{+}$
O Planar equilateral triangle
O H common orbital fragment

- $\mathrm{BH}_{3}, \mathrm{NH}_{3}, \mathrm{ER}_{3}, \mathrm{ML}_{3}$ etc

O Model for heavier elements

- such as Au_{3}
- highest active orbital is 6 s orbital
$\mathrm{H}_{3}{ }^{+}$is interesting!
- Most abundant ion in universe
- Important for interstellar chemistry
- Use spectroscopy to detect new interstellar species, also provide information on interstellar chemical and physical conditions

Links on the web-site

Symmetry operations of $D_{3 h}$

- 1 E identity
- $2 \mathrm{C}_{3}$ rotations
- $3 \mathrm{C}_{2}$ rotations
- $1 \sigma_{\mathrm{h}}$ reflection
- $2 \mathrm{~S}_{3}$ improper rotations
- $3 \sigma_{\mathrm{v}}$ reflections

O number of operations
Oh=total number of operations
$\bullet=1+2+3+1+2+3=12$

$D_{3 h}$	E	$2 C_{3}$	$3 C_{2}$	σ_{h}	$2 S_{3}$	$3 \sigma_{v}$
$\mathrm{~A}_{1}{ }^{\prime}$	1	1	1	1	1	1
$\mathrm{~A}_{2}{ }^{\prime}$	1	1	-1	1	1	-1
E^{\prime}	2	-1	0	2	-1	0
$\mathrm{~A}_{1}{ }^{\prime \prime}$	1	1	1	-1	-1	-1
$\mathrm{~A}_{2}{ }^{\prime \prime}$	1	1	-1	-1	-1	1
$\mathrm{E}^{\prime \prime}$	2	-1	0	-2	1	0

Fig. 19

Hy in in in in in in in in

Fig. 21
$\begin{array}{lll}C_{3}^{1} & C_{3}^{2} & C_{3}^{3}\end{array}$

Q Each rotation of order n has n rotations
Ofor example

Ofinal rotation returns to starting geometry $=E$
Oonly keep unique operations

- if already counted in a symmetry element to the left on the character table, or under a rotation of lower n it is not counted again

Orotation groups

- mathematical entities
- whole area of mathematics devoted to groups

\#
 $3 \mathrm{C}_{2}$ Rotations

O three separate C_{2} axes

- each contributes one C_{2} rotation
Q find one C_{2} axis and use C_{3} to find the rest
- each element is distinct: | C_{2} | C_{2}^{\prime} | $C_{2}^{\prime \prime}$ |
| :--- | :--- | :--- |

Multiple Operations

Q $2 C_{3}$ and $3 C_{2}$ appear in the character table of $\mathrm{D}_{3 \mathrm{~h}}$

- it doesn't matter if these are the SAME or DIFFERENT symmetry elements
- the table only "cares" about operations
one element 3 operations

$$
\begin{array}{lllllll}
E & 2 C_{3} & 3 C_{2} & \sigma_{h} & 2 S_{3} & 3 \sigma_{v}
\end{array}
$$ $C_{3}^{1} \quad C_{3}^{2}$

Q A and B singe representations - atoms/orbitals map onto each other

$D_{3 h}$	E	$2 C_{3}$	$3 C_{2}$	σ_{h}	$2 S_{3}$	$3 \sigma_{v}$
$\mathrm{~A}_{1}^{\prime}$	1	1	1	1	1	1
$\mathrm{~A}_{2}^{\prime}$	1	1	-1	1	1	-1
E^{\prime}	2	-1	0	2	-1	0
$\mathrm{~A}_{1}^{\prime \prime}$	1	1	1	-1	-1	-1
$\mathrm{~A}_{2}^{\prime \prime}$	1	1	-1	-1	-1	1
$\mathrm{E}^{\prime \prime}$	2	-1	0	-2	1	0

$Q A$ and B singe representations

- atoms/orbitals map onto each other

O Edoubly degenerate

- don't confuse with E operation!
- orbitals as a group map onto each other
- character $=2$ under E operation
- T triply degenerate
- tetrahedral point groups (Td)
- character =3 under E operation

$D_{3 h}$	E	$2 C_{3}$	$3 C_{2}$	σ_{h}	$2 S_{3}$	$3 \sigma_{v}$
$\mathrm{~A}_{1}{ }^{\prime}$	1	1	1	1	1	1
$\mathrm{~A}_{2}{ }^{\prime}$	1	1	-1	1	1	-1
E^{\prime}	2	-1	0	2	-1	0
$\mathrm{~A}_{1}{ }^{\prime \prime}$	1	1	1	-1	-1	-1
$\mathrm{~A}_{2}^{\prime \prime}$	1	1	-1	-1	-1	1
$\mathrm{E}^{\prime \prime}$	2	-1	0	-2	1	0

Symmetry Labels

A and B singe representations

- atoms/orbitals map onto each other

Q Edoubly degenerate

- don't confuse with E operation!
- orbitals as a group map onto each other
- character $=2$ under E operation

OT triply degenerate

- tetrahedral point groups (Td)
- character $=3$ under E operation

$D_{3 h}$	E	$2 C_{3}$	$3 C_{2}$	σ_{h}	$2 S_{3}$	$3 \sigma_{v}$
$\mathrm{~A}_{1}{ }^{\prime}$	1	1	1	1	1	1
$\mathrm{~A}_{2}{ }^{\prime}$	1	1	-1	1	1	-1
E^{\prime}	2	-1	0	2	-1	0
$\mathrm{~A}_{1}{ }^{\prime \prime}$	1	1	1	-1	-1	-1
$\mathrm{~A}_{2}^{\prime \prime}$	1	1	-1	-1	-1	1
$\mathrm{E}^{\prime \prime}$	2	-1	0	-2	1	0

Fig. 19
You have already seen e and t symmetry labels!

Degenerate Representations
degenerate representations
example: (p_{x}, p_{y}) have e' symmetry in $D_{3 h}$

Fig. 23

O degenerate representations

- example: (p_{x}, p_{y}) have e' symmetry in $D_{3 h}$

O character refers to BOTH components

- how to work out the character?
- take point on tip of each orbital
- write the position in coordinates as
- form matrix by combing the coordinates

$\left(\begin{array}{ll}\mathrm{p}_{\mathrm{x}} \\ \mathrm{p}_{\mathrm{y}} \\ \mathbf{y} \\ \mathbf{y} \\ 1\end{array}\right)\binom{0}{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

Degenerate Representations

O degenerate representations

- example: (p_{x}, p_{y}) have e' symmetry in $\mathrm{D}_{3 \mathrm{~h}}$

O character refers to BOTH components

- how to work out the character?
- take point on tip of each orbital
- write the position in coordinates as
- form matrix by combing the coordinates
- perform the operation

Degenerate Representations

O degenerate representations

- example: (p_{x}, p_{y}) have e^{\prime} symmetry in $D_{3 h}$

Q character refers to BOTH components

- how to work out the character?
- take point on tip of each orbital
- write the position in coordinates as
- form matrix by combing the coordinates
- perform the operation
- the character is the TRACE of this matrix
- trace=sum of diagonal terms
- for this example (E) trace=1+1=2
- character is 2

Fig. 23

Degenerate Representations

O the character for the o_{v} operation under $D_{3 h}$

$$
\sigma_{v}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Fig. 24

OPTIONAL: More details about degenerate representations on my web-site
$\left.\begin{array}{|c|cccccc|}D_{3 h} & \mathrm{E} & 2 C_{3} & 3 C_{2} & \sigma_{h} & 2 S_{3} & 3 \sigma_{v} \\ \hline \mathrm{~A}_{1}{ }^{\prime} & 1 & 1 & 1 & 1 & 1 & 1 \\ \mathrm{~A}_{2}{ }^{\prime} & 1 & 1 & -1 & 1 & 1 & -1 \\ \mathrm{E}^{\prime} & 2 & -1 & 0 & 2 & -1 & 0 \\ \hline \mathrm{~A}_{1}{ }^{\prime \prime} & 1 & 1 & 1 & -1 & -1 & -1 \\ \mathrm{~A}_{2}^{\prime \prime} & 1 & 1 & -1 & -1 & -1 & 1 \\ \mathrm{E}^{\prime \prime} & 2 & -1 & 0 & -2 & 1 & 0\end{array} \mathrm{~T}_{\mathrm{z}}, \mathrm{T}_{\mathrm{y}}\right)$

Ofind character for the C_{2} operation under $\mathrm{D}_{3 h}$

Fig. 25

In-Class Activity

find character for the C_{2} operation under $D_{3 h}$

O rotation followed by reflection in mirror plane perpendicular to the axis of rotation

O phase changes are important

Important!

\checkmark use pAOs to visualise
\checkmark OR take a point off the mirror plane and axis (black circle above)

- sometimes it requires two full rotations to return to starting state

$$
S_{3}^{3} \neq E \quad S_{3}^{6}=E
$$

O only keep unique operations

- "count" symmetry element to the left on the character table
- does not apply to rotations
- count lowest n for C_{n} operations first
- for example count C_{2}^{1} over C_{4}^{2}
- final rotation in a group $=E$

O many improper rotations will have already been counted

- watch out for odd $\mathrm{S}_{\mathrm{n}} \mathrm{n}=$ odd $S_{n}^{n} \neq E$

\#
 M M M M
 Improper Rotations

Odiagram showing $S_{3}^{3} \neq E=\sigma_{h}$

OPTIONAL: Supporting
information about improper
rotations on my web-site

Key Points

Q Be able to define symmetry element, operation and operator

- Be able to draw clear diagrams showing the symmetry elements of a molecule and the action of a symmetry operation

O Be able to define all the components of a character table
O Be able to use character tables to find the symmetry label of MOs
O Be able to identify when operations in the header row are due to multiple symmetry elements or multiple symmetry operations
O Be able to identify degenerate irreducible representations
O Be able to determine the characters of degenerate IRs
O Be able to perform and illustrate Sn operations
O Be able to identify and show when operations are not unique
http://www.huntresearchgroup.org.uk/

