MMMMMMMHMMMMMHM Molecular Orbitals in Inorganic Chemistry

Dr. P. Hunt

p.hunt@imperial.ac.uk

Rm 110F (MSRH)

11 I \qquad
\qquad

Outline

Q choosing fragments
Q orbital symmetry (again!)
Q bonding and antibonding character of orbitals
O complex MOs $->$ decompose into LCAOs
O a complex MO diagram: $\mathrm{B}_{2} \mathrm{H}_{6}$

MO diagrams combine two fragments

Symmetry Fragments

Molecular Fragments

Q Symmetry fragments

- atoms that transform onto each other under operations of the point group
- "equivalent atoms" in terms of NMR

O Molecular fragments

- small molecules for which the MOs are well known
- like AH_{2} or liner AB or AH_{3}

Example:

Q $\mathrm{CH}_{2} \mathrm{O}$

- formaldehyde
- molecular fragments CH_{2} and O
- symmetry fragments H_{2} and CO
- use molecular fragments as there is a single atom

preferred

H's map onto each other under C_{2}

Example:

Q BH_{3}

- boron trihydride
- molecular fragments H_{2} and BH
- symmetry fragments H_{3} and B
- use the symmetry fragments as there is a single atom

preferred

10
 11 il
 In-Class Activity

- $\mathrm{C}_{2} \mathrm{H}_{4}$
- ethane
- determine the symmetry fragments
- determine the molecular fragments
- which is the better one to use and why?

Fig. 3

Short-cuts

Q look at the phase pattern!
Q orbitals with the same phase pattern as an axis have the same symmetry label as the axis

Orbital Symmetry

Short-cuts

Q look at the phase pattern!
Q orbitals with the same phase pattern as a dAO have the same symmetry as the corresponding cartesian function
look at the last column on your character tables: it gives the symmetry label (IR) of the binary cartesian functions

same symmetry as the $d x z \mathrm{AO}$

 Orbital Symmetry

O if there are no short-cuts possible => use a representation table

$$
\begin{aligned}
& \begin{array}{lllll}
D_{2 h} & \mathrm{E} & C_{2}(z) & C_{2}(y) C_{2}(x) & i \\
\sigma(x y) & \sigma(x z) & \sigma(y z)
\end{array}
\end{aligned}
$$

Fig. 6
(TC)

test yourself!

O socrative quiz

- determine the symmetry of these MOs
- these are MOs from $\mathrm{C}_{2} \mathrm{H}_{4}$ which belongs to the $\mathrm{D}_{2 \mathrm{~h}}$ point group
- assume the centre of the axis system lies on the centre of inversion for the molecule

Bonding vs Anti-bonding

\bigcirc Bonding

- bonding $=>$ in-phase overlap
- anti-bonding $=>$ out-of-phase overlap

8
 II il il i
 Bonding vs Anti-bonding

OBnding

- bonding => in-phase overlap
- anti-bonding $=>$ out-of-phase overlap

Nodes

- occur where phase changes
- raises the energy of an orbital, more nodes indicates increasing anti-bonding character
- nodes at atoms are less important
 internuclear region

More Complex MOs

Complex MO

- has both bonding and anti-bonding components

O Bonding character is a sliding scale

- $\sigma(s)$ interactions are much stronger than $\pi(p)$ type interactions
- the closer the orbitals the stronger the interaction
this MO has only sAOs so interactions are stronger than π or p interactions (bonded vs non-bonded)

In-Class Activity

test yourself!

O annotate a diagram of M01 identifying the bonding/ antibonding interactions
what is the relative energy ordering of these MOs?
© HINTS

- look at ALL of the interactions
- what is the type of interaction (s or p)?
- what is the distance between the interacting orbitals?
- for similar MOs how many nodes are there?

If in il in in in in in in in in in il LCAO for complex MOs

O in research we often work in "reverse"

- optimise a molecule
- confirm the minima (frequency analysis)
- compute the MOs

O you will have seen the "MO window" for gaussview

O dithiocarbamate ligands

- used as ligands for many TM and coinage metal complexes
- used in nanoparticle synthesis

$$
\mathrm{S}_{2} \mathrm{C}=\mathrm{NR}_{2}
$$

If il if in in if if in in
 LCAO for complex MOs

which MOs are

 important??- not the deep core orbitals: AO-like
- "jump" in energy
- not the high energy unoccupied MOs: too diffuse
- LUMO+4 and above
- yes to valence MOs!
- yes to lower energy unoccupied MOs

this file is available on my web-site

Fig. 10

LCAO for complex MOs

Q decompose the real MOs into LCAO components

- examine MO look for AO contributions
- very small contributions are ignored
- relate to known fragment orbitals
- relative size is important

Look at Fig 11 in

 your notes

O decompose the real MOs into LCAO components

- examine MO look for AO contributions
- very small contributions are ignored
- relate to known fragment orbitals
- relative size is important

"built" from $\mathrm{EH}_{2} \mathrm{FOs}$

LCAO for complex MOs

Q decompose the real MOs into LCAO components

- examine MO look for AO contributions
- very small contributions are ignored
- relate to known fragment orbitals
- relative size is important

Look at Fig 11 in your notes

Fig. 11
"built" from EX_{2} FOs

Q decompose the real MOs into LCAO components

- examine MO look for AO contributions
- very small contributions are ignored
- relate to known fragment orbitals
- relative size is important

orientation!!

draw what you see, FO does not lie along the bonds

Complex MO Diagrams

O complex molecules are built up by combining a series of fragments
2. combine two BH_{2} fragments
=> intermediate MO diagram

Diborane

Q We could expect the bonding in $\mathrm{B}_{2} \mathrm{H}_{6}$ to be similar to that of ethane

O VSEPR theory

- does not work!
- make an ad-hoc correction
- 3 center two electron "bent" bonds

O Molecular Orbital Theory

- MOs are easily developed
- no special corrections required
- stability and bonding of diborane explained

Revision: MO checklist

Steps to construct a MO diagram

1.determine the molecular shape and identify the point group of the molecule
2. define the axial system and find all of the symmetry operations on the molecule 3.identify the chemical fragments, and put them along the bottom of the diagram
4. determine the energy levels and symmetry labels of the fragment orbitals
5.combine fragment orbitals of the same symmetry, estimate the splitting energy and draw in the MO energy levels and MOs (in pencil!)
6. determine the number of electrons in each fragment and hence the central MO region, add them to the diagram
7.identify if any MO mixing occurs, determine the mixed orbitals and redraw the MO diagram with shifted energy levels and the mixed MOs
8. use this checklist!
9.analyse the MO diagram

Setting Up

O determine molecular shape
O identify the point group of the molecule: $\mathrm{D}_{2 h}$ convince yourself of this
 for homework

- define the axial system
© find all of the symmetry elements
- $3 \mathrm{C}_{2}$ axes
- 3σ planes
- centre of inversion, i
convince yourself of this for homework

Revision: MO checklist

Steps to construct a MO diagram

1.determine the molecular shape and identify the point group of the molecule
2. define the axial system and find all of the symmetry operations on the molecule 3.identify the chemical fragments, and put them along the bottom of the diagram
4. determine the energy levels and symmetry labels of the fragment orbitals
5.combine fragment orbitals of the same symmetry, estimate the splitting energy and draw in the MO energy levels and MOs (in pencil!)
6. determine the number of electrons in each fragment and hence the central MO region, add them to the diagram
7.identify if any MO mixing occurs, determine the mixed orbitals and redraw the MO diagram with shifted energy levels and the mixed MOs
8. use this checklist!
9. analyse the MO diagram

Intermediate Diagram

Q treat two BH_{2} fragments first

- know orbitals for EH_{2}
- combine these two in intermediate diagram
- include orbitals up to LUMO+1
- requires electronic configuration of fragment
- $\mathrm{B}=3$ valence e and $2 \mathrm{H}=2$ valence e
- fragment $=5 e$ therefor keep up to b_{2} orbital

Revision: MO checklist

Steps to construct a MO diagram

1.determine the molecular shape and identify the point group of the molecule
2.define the axial system and find all of the symmetry operations on the molecule 3.identify the chemical fragments, and put them along the bottom of the diagram
4.determine the energy levels and symmetry labels of the fragment orbitals
5.combine fragment orbitals of the same symmetry, estimate the splitting energy and draw in the MO energy levels and MOs (in pencil!)
6. determine the number of electrons in each fragment and hence the central MO region, add them to the diagram
7.identify if any MO mixing occurs, determine the mixed orbitals and redraw the MO diagram with shifted energy levels and the mixed MOs
8. use this checklist!
9.analyse the MO diagram

Q combine fragment orbitals of the same symmetry

Q FIRST work out the MOs
Q THEN the splitting energy:

- degenerate orbitals have a large interaction
- but BH_{2} units are NOT directly bonded and hence have a weaker interaction
- still moderated by overlap strength: s vs p_{σ} vs p_{π}

O make an educated guess that can be justified

- exact ordering will require computation

Symmetry Labels?

O totally bonding MO

O totally bonding MO
Q which symmetry label is associated with each of the axes?

- x-axis $=b_{3 u}$
- y-axis $=b_{2 u}$
- z -axis $=\mathrm{b}_{1 \mathrm{u}}$
see the character table

Symmetry Labels?

O totally bonding MO
Q which symmetry label is
associated with each of the axes?

- x -axis $=\mathrm{b}_{3 \mathrm{u}}$
- y-axis $=b_{2 u}$
- z -axis $=\mathrm{b}_{1 \mathrm{u}}$

Which MOs have the same phase pattern as dAOs?

O totally bonding MO
Qhich symmetry label is associated with each of the axes?

- x-axis $=b_{3 u}$
- y-axis $=b_{2 u}$
- z -axis $=\mathrm{b}_{1 \mathrm{u}}$
which MOs have the same phase pattern as dAOs?

O final MO: use representation table

Fig. 19 $D_{2 h} \quad \mathrm{E} \quad C_{2}(z) \quad C_{2}(y) C_{2}(x) \quad i \quad \sigma(x y) \sigma(x z) \quad \sigma(y z)$ $\begin{array}{ccccccccc}\Gamma\left\{\begin{array}{llllll}0 & 0 \\ 0 & 0\end{array}\right\} 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\ & & & & & \text { biu symmetry }\end{array}$
© Where will the H_{2} orbitals lie?

Q the H atoms are not directly bonded

- means small splitting energy
- means fragments are almost nonbonding
- so they will lie near non-bonding orbitals of $\mathrm{B}_{2} \mathrm{H}_{4}$ fragment

Fig. 19

MO Diagram

Combine orbitals of the same symmetry

O ag_{g}

- lowest $\mathrm{B}_{2} \mathrm{H}_{4}$ ag orbital is too deep and will not interact
- the energy levels are not very close, but overlap is good stabilisation is medium

MO Diagram

Q Combine orbitals of the same symmetry

- b3u

- there is only one b3u orbital on $\mathrm{B}_{2} \mathrm{H}_{4}$ fragment
- the energy levels are almost degenerate, stabilisation is large

Revision: MO checklist

Steps to construct a MO diagram

1.determine the molecular shape and identify the point group of the molecule
2.define the axial system and find all of the symmetry operations on the molecule 3.identify the chemical fragments, and put them along the bottom of the diagram
4.determine the energy levels and symmetry labels of the fragment orbitals
5.combine fragment orbitals of the same symmetry, estimate the splitting energy and draw in the MO energy levels and MOs (in pencil!)
6.determine the number of electrons in each fragment and hence the central MO region, add them to the diagram
7.identify if any MO mixing occurs, determine the mixed orbitals and redraw the MO diagram with shifted energy levels and the mixed MOs
8. use this checklist!
9.analyse the MO diagram

\# MO Diagram

- Configuration

- $10 e$ from $\mathrm{B}_{2} \mathrm{H}_{4}$ fragment and $2 e$ from $\mathrm{H}_{2}=12 \mathrm{e}$

Only MOs of the same symmetry mix

- must also be close in energy
- greatest between occupied and unoccupied orbitals
© ag and biu?
- $b_{1 u}$ too far apart in energy
- ag_{g} both occupied

NO mixing!

Revision: MO checklist

Steps to construct a MO diagram

1.determine the molecular shape and identify the point group of the molecule
2.define the axial system and find all of the symmetry operations on the molecule 3.identify the chemical fragments, and put them along the bottom of the diagram
4.determine the energy levels and symmetry labels of the fragment orbitals
5.combine fragment orbitals of the same symmetry, estimate the splitting energy and draw in the MO energy levels and MOs (in pencil!)
6. determine the number of electrons in each fragment and hence the central MO region, add them to the diagram
7.identify if any MO mixing occurs, determine the mixed orbitals and redraw the MO diagram with shifted energy levels and the mixed MOs
8. use this checklist!
9.analyse the MO diagram

Analysis

- 4 of the occupied MOs are non-bonding with respect to the bridging H atoms

Analysis

- 4 of the occupied MOs are non-bonding with respect to the bridging H atoms
- 2 of the occupied MOs describe bonding with the bridging H atoms
- natural description which doesn't require us to invoke "add-hoc" corrections to a theory

Analysis

- 4 of the occupied MOs are non-bonding with respect to the bridging H atoms
- 2 of the occupied MOs describe bonding with the bridging H atoms
- natural description which doesn't require us to invoke "add-hoc" corrections to a theory
- LUMO is essentially nonbonding between BH_{2} units (and H_{2})
- low energy for a LUMO
- can accept electrons without destabilising the molecule

$\mathrm{B}_{2} \mathrm{H}_{6}{ }^{2-}$ is stable!

Key Points

Q be able to differentiate between symmetry and molecular fragments and be able to choose fragments that make generating the MO diagram easier

O be able to quickly determine the symmetry of MOs using character tables and "short-cuts"

O be able to explain the bonding/antibonding qualities of a set of MOs and annotate a diagram showing the key characteristics

O be able to represent complicated computed MOs in terms of LCAOs

O be able to discuss the bonding in $\mathrm{B}_{2} \mathrm{H}_{6}$ with respect to VSEPR theory, delocalisation, and MO theory. Be able to justify the stability of $\mathrm{B}_{2} \mathrm{H}_{6}{ }^{2-}$

O be able to form a MO diagram for $\mathrm{A}_{2} \mathrm{H}_{2}, \mathrm{~A}_{2} \mathrm{H}_{4}, \mathrm{~A}_{2} \mathrm{H}_{6}$ and analyse the MO diagram for information relating to structure and bonding
http://www.huntresearchgroup.org.uk/

Q draw the LCAO for M014, M24 and M025

MO 14

MO 24
HOMO

MO 25
LUMO

