Molecular Orbitals in Inorganic Chemistry

Dr. P. Hunt p.hunt@imperial.ac.uk Rm 110F (MSRH)

Outline

choosing fragments
 orbital symmetry (again!)
 bonding and antibonding character of orbitals
 complex MOs -> decompose into LCAOs
 a complex MO diagram: B₂H₆

Complex Fragments

MO diagrams combine two fragments

Symmetry Fragments

Molecular Fragments

Symmetry fragments

atoms that transform onto each other under operations of the point group

"equivalent atoms" in terms of NMR

Molecular fragments

small molecules for which the MOs are well known

like AH₂ or liner AB or AH₃

Example:

Example:

BH₃

- boron trihydride
- ♦ molecular fragments H₂ and BH
- symmetry fragments H₃ and B
- use the symmetry fragments as there is a single atom

preferred

H₂ and BH fragments will have the same MOs as diatomics

H's map onto each other under C₂

In-Class Activity

C₂H₄

- ♦ ethane
- determine the symmetry fragments
- determine the molecular fragments
- which is the better one to use and why?

Orbital Symmetry

Short-cuts

look at the phase pattern!

orbitals with the same phase pattern as an axis have the same symmetry label as the axis

same symmetry as the z-axis

Orbital Symmetry

Short-cuts

Iook at the phase pattern!
 orbitals with the same phase pattern as a dAO have the same symmetry as the corresponding cartesian function

look at the last column on your character tables: it gives the symmetry label (IR) of the binary cartesian functions

same symmetry as the dxz AO

Orbital Symmetry

if there are no short-cuts possible => use a representation table

In-Class Activity

determine the symmetry of these MOs

- ♦ these are MOs from C₂H₄ which belongs to the D_{2h} point group
- assume the centre of the axis system lies on the centre of inversion for the molecule

Bonding vs Anti-bonding

Bonding

- bonding => in-phase overlap
- anti-bonding => out-of-phase overlap

Bonding vs Anti-bonding

Bonding

- bonding => in-phase overlap
- anti-bonding => out-of-phase overlap

Nodes

- occur where phase changes
- raises the energy of an orbital, more nodes indicates increasing anti-bonding character
- nodes at atoms are less important

nodes where phase changes in the internuclear region

More Complex MOs

Complex MO

has both bonding and anti-bonding components

Bonding character is a sliding scale

- σ (s) interactions are much stronger than π (p) type interactions
- the closer the orbitals the stronger the interaction (bonded vs non-bonded)

orbitals are close => strong (antibonding) interaction this MO has only sAOs so interactions are stronger than π or p interactions

orbitals are far apart => weak (bonding) interaction Important!

In-Class Activity

test yourself!

- annotate a diagram of MO1 identifying the bonding/ antibonding interactions
- what is the relative energy ordering of these MOs?

HINTS

- look at ALL of the interactions
- what is the type of interaction (s or p)?
- what is the distance between the interacting orbitals?
- for similar MOs how many nodes are there?

- in research we often work in "reverse"
 - optimise a molecule
 - confirm the minima (frequency analysis)
 - compute the MOs
- you will have seen the "MO window" for gaussview

dithiocarbamate ligands

- used as ligands for many TM and coinage metal complexes
- used in nanoparticle synthesis

 $S_2C=NR_2$

Importants poor attempts in last years exam

MO ((MO = 20) ; Isovalue = 0.02)

Spin:

Add Type: Highlighted

Current List: 1a-28

Singlet

Isovalue: 0.02

*

Charge: -1

Fig. 10

ent Surface:

0.33116 0.25367 0.22161 0.22017 0.18761 0.14114 -0.02292

-0.03800

-0.05602

-0.07430 -0.17217 -0.20973 -0.20973

-0.23814

-0.36744

-0.39293

-0.49959 -0.57505 -0.77294

-5.66198

- -7.70354 - -7.70359 - -10.09976 -

-14.17233

update ...

2 -1 -88.61643

Gaussian MOs from: /Users/tricia/Files/work/jobs/course:

Cube Grid: Coarse

New MOs Visualize Calculation Diagram

this file is available

on my web-site

Add List: 20a

on my web-site

which MOs are important??

- not the deep core orbitals: **AO-like**
- "jump" in energy

 not the high energy unoccupied MOs: too diffuse

- LUMO+4 and above
- yes to valence MOs! yes to lower energy unoccupied MOs

29 28 24 12 this file is available **Fig. 10**

MO ((MO = 20) ; Isovalue = 0.02)

decompose the real MOs into LCAO components

examine MO look for AO contributions
very small contributions are ignored
relate to known fragment orbitals
relative size is important

Look at Fig 11 in your notes

decompose the real MOs into LCAO components

- examine MO look for AO contributions
- very small contributions are ignored
- relate to known fragment orbitals

MO15

relative size is important

combined **"b**₁" MOs from EH₂ fragments

decompose the real MOs into LCAO components

- examine MO look for AO contributions
- very small contributions are ignored
- relate to known fragment orbitals
- relative size is important

Look at Fig 11 in your notes

decompose the real MOs into LCAO components

- examine MO look for AO contributions
 very small contributions are ignored
 relate to known fragment orbitals
- ♦ relative size is important

larger contribution

combined "a₁" MOs from EX₂ and EH₂ fragments

"built" from EX₂ FOs "built" from EH₂ FOs

orientation!! draw what you see, FO does not lie along the bonds

Diborane

We could expect the bonding in B₂H₆ to be similar to that of ethane

VSEPR theory

- does not work!
- make an ad-hoc correction
- ♦ 3 center two electron "bent" bonds

Molecular Orbital Theory

- MOs are easily developed
- no special corrections required
- stability and bonding of diborane explained

Revision: MO checklist

Steps to construct a MO diagram

- 1. determine the molecular shape and identify the point group of the molecule
- 2. define the axial system and find all of the symmetry operations on the molecule
- 3. identify the chemical fragments, and put them along the bottom of the diagram
- 4. determine the energy levels and symmetry labels of the fragment orbitals
- 5.combine fragment orbitals of the same symmetry, estimate the splitting energy and draw in the MO energy levels and MOs (in pencil!)
- 6.determine the number of electrons in each fragment and hence the central MO region, add them to the diagram
- 7. identify if any MO mixing occurs, determine the mixed orbitals and redraw the MO diagram with shifted energy levels and the mixed MOs
- 8.use this checklist!
- 9. analyse the MO diagram

Setting Up

determine molecular shape

identify the point group of the molecule: D_{2h} convince yourself of this

for homework

define the axial system

find all of the symmetry elements

- ♦ 3 C₂ axes
- 3 σ planes
- centre of inversion, i

convince yourself of this for homework

Revision: MO checklist

Steps to construct a MO diagram

- 1. determine the molecular shape and identify the point group of the molecule
- 2. define the axial system and find all of the symmetry operations on the molecule
- 3. identify the chemical fragments, and put them along the bottom of the diagram
- 4. determine the energy levels and symmetry labels of the fragment orbitals
- 5.combine fragment orbitals of the same symmetry, estimate the splitting energy and draw in the MO energy levels and MOs (in pencil!)
- 6.determine the number of electrons in each fragment and hence the central MO region, add them to the diagram
- 7. identify if any MO mixing occurs, determine the mixed orbitals and redraw the MO diagram with shifted energy levels and the mixed MOs
- 8.use this checklist!
- 9. analyse the MO diagram

Intermediate Diagram

treat two BH₂ fragments first

- ♦ know orbitals for EH₂
- combine these two in intermediate diagram
- include orbitals up to LUMO+1
- requires electronic configuration of fragment
- ◆ B=3 valence e and 2H=2 valence e
- fragment =5e therefor keep up to b₂ orbital

X

Revision: MO checklist

Steps to construct a MO diagram

1.determine the molecular shape and identify the point group of the molecule
 2.define the axial system and find all of the symmetry operations on the molecule

- 3. identify the chemical fragments, and put them along the bottom of the diagram
- 4. determine the energy levels and symmetry labels of the fragment orbitals
- 5.combine fragment orbitals of the same symmetry, estimate the splitting energy and draw in the MO energy levels and MOs (in pencil!)
- 6.determine the number of electrons in each fragment and hence the central MO region, add them to the diagram
- 7. identify if any MO mixing occurs, determine the mixed orbitals and redraw the MO diagram with shifted energy levels and the mixed MOs
- 8.use this checklist!
- 9. analyse the MO diagram

Form B₂H₄ Fragment

combine fragment orbitals of the same symmetry

FIRST work out the MOs

THEN the splitting energy:

- degenerate orbitals have a large interaction
- but BH₂ units are NOT directly bonded and hence have a weaker interaction
- still moderated by overlap strength: s vs p_{σ} vs p_{π}

make an educated guess that can be justified

exact ordering will require computation

totally bonding MO

which symmetry label is associated with each of the axes?

★ x-axis = b_{3u}
★ y-axis = b_{2u}

♦ z-axis = b_{1u}

see the character table

totally bonding MO

which symmetry label is associated with each of the axes?

- ♦ x-axis = b_{3u}
- ♦ y-axis = b_{2u}
- ♦ z-axis = b_{1u}

totally bonding MO

- which symmetry label is associated with each of the axes?
 - ♦ x-axis = b_{3u}
 - ♦ y-axis = b_{2u}
 - ♦ z-axis = b_{1u}

which MOs have the same phase pattern as dAOs?

totally bonding MO

which symmetry label is associated with each of the axes?

- ♦ x-axis = b_{3u}
- ♦ y-axis = b_{2u}
- ♦ z-axis = b_{1u}
- which MOs have the same phase pattern as dAOs?

final MO: use representation table

Fig. 19	D_{2h}	E	$C_2(z)$	$C_2($	$(y) C_2(x)$	i	$\sigma(xy)$	$\sigma(xz)$	$\sigma(yz)$
г { 8		1	1	-1	-1	-1	-1	1	1
<u> </u> [ơ			16 J 16 J 10	15 3	1000		b 1	_u sym	metry

Fragments:

use the molecular fragments because it is easier to work out the interactions of degenerate fragments

Set-Up

Where will the H₂ orbitals lie?

the H atoms are not directly bonded

- means small splitting energy
- means fragments are almost nonbonding
- so they will lie near non-bonding orbitals of B₂H₄ fragment

MO Diagram

Combine orbitals of the same symmetry

🎯 ag

- lowest B₂H₄ a_g orbital is too deep and will not interact
- the energy levels are not very close, but overlap is good stabilisation is medium

MO Diagram

Combine orbitals of the same symmetry

🥥 b_{3u}

- there is only one b_{3u} orbital on B₂H₄ fragment
- the energy levels are almost degenerate, stabilisation is large

Revision: MO checklist

Steps to construct a MO diagram

 determine the molecular shape and identify the point group of the molecule
 define the axial system and find all of the symmetry operations on the molecule
 identify the chemical fragments, and put them along the bottom of the diagram
 determine the energy levels and symmetry labels of the fragment orbitals
 combine fragment orbitals of the same symmetry, estimate the splitting energy and draw in the MO energy levels and MOs (in pencil!)

6.determine the number of electrons in each fragment and hence the central MO region, add them to the diagram

7. identify if any MO mixing occurs, determine the mixed orbitals and redraw the MO diagram with shifted energy levels and the mixed MOs

8.use this checklist!

9. analyse the MO diagram

MO Diagram

Configuration

 10e from B₂H₄ fragment and 2e from H₂ =12e

Only MOs of the same symmetry mix

- must also be close in energy
- greatest between occupied and unoccupied orbitals

ag and b_{1u}?

- ♦ b_{1u} too far apart in energy
- ♦ ag both occupied

NO mixing!

Revision: MO checklist

Steps to construct a MO diagram

 determine the molecular shape and identify the point group of the molecule
 define the axial system and find all of the symmetry operations on the molecule
 identify the chemical fragments, and put them along the bottom of the diagram
 determine the energy levels and symmetry labels of the fragment orbitals
 combine fragment orbitals of the same symmetry, estimate the splitting energy and draw in the MO energy levels and MOs (in pencil!)

6.determine the number of electrons in each fragment and hence the central MO region, add them to the diagram

7. identify if any MO mixing occurs, determine the mixed orbitals and redraw the MO diagram with shifted energy levels and the mixed MOs

8.use this checklist!

9. analyse the MO diagram

Analysis

 4 of the occupied MOs are non-bonding with respect to the <u>bridging</u> H atoms

Analysis

- 4 of the occupied MOs are non-bonding with respect to the <u>bridging</u> H atoms
- 2 of the occupied MOs describe bonding with the bridging H atoms
- natural description which doesn't require us to invoke "add-hoc" corrections to a theory

Analysis

- 4 of the occupied MOs are non-bonding with respect to the <u>bridging</u> H atoms
- 2 of the occupied MOs describe bonding with the bridging H atoms
- natural description which doesn't require us to invoke "add-hoc" corrections to a theory
- LUMO is essentially nonbonding between BH₂ units (and H₂)
- low energy for a LUMO
- can accept electrons without destabilising the molecule

B₂H₆²⁻ is stable!

Key Points

- be able to differentiate between symmetry and molecular fragments and be able to choose fragments that make generating the MO diagram easier
- be able to quickly determine the symmetry of MOs using character tables and "short-cuts"
- be able to explain the bonding/antibonding qualities of a set of MOs and annotate a diagram showing the key characteristics
- be able to represent complicated computed MOs in terms of LCAOs
- be able to discuss the bonding in B₂H₆ with respect to VSEPR theory, delocalisation, and MO theory. Be able to justify the stability of B₂H₆²⁻

be able to form a MO diagram for A₂H₂, A₂H₄, A₂H₆ and analyse the MO diagram for information relating to structure and bonding

Finally

See my web-site

+ notes AND slides

Ink to panopto when it becomes available optional background support for beginners optional material to take you a little further Inks to interesting people and web-sites Inks to relevant research papers on MOs + model answers!!

July 2019

Molecular orbital of the month This is a MO from SnOTf4. OTf is a triflate anion

[SO₃CF₃]⁻ which coordinates to the central tin (Sn) metal through oxygen atoms. SnOTf₄ is a novel catalyst for activating methane and thus producing useful molecules like methanol. Using methane from biomass or natural gas sources as a feedstock to build more compelex molecules is a promising area. We also have the advantage of replacing transition metals with less expensive and more abundant main group metals. This new catalyst is unusual in that the ligand has a larger effect on reactivity than the central metal.

In-Class Activity

Iraw the LCAO for MO14, M24 and MO25

