Self-Study Problems / Exam Preparation

- Draw the MO diagram for Mo₂ and show that a sextuple bond order is potentially possible.
 - o Cr, has the valence configuration [Ar]3d⁴4s² Mo and W are similar with higher principle quantum number 5s and 6s respectively, the metals are more stable with half filled shells [Ar]nd⁵(n+1)s¹, **Figure 1**

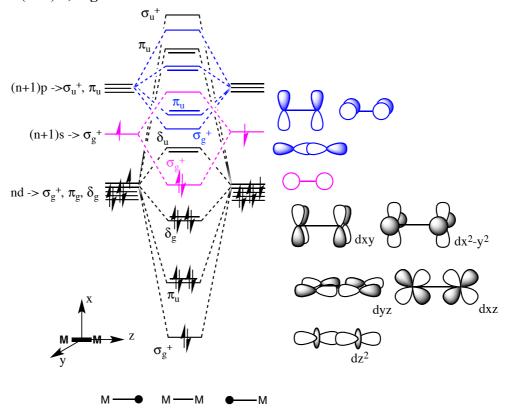


Figure 1 M₂ showing sextuple bonding

- Use the long method to show that the M_2 dimer dxz/dyz combination of AOs has π_u symmetry.
 - o remember the $D_{\infty h}$ symmetry elements, **Figure 2**

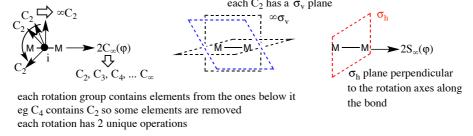


Figure 2 $D_{\infty h}$ symmetry elements

o start building a representation table, Figure 3

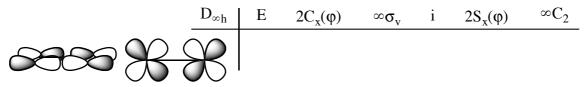


Figure 3 $D_{\infty h}$ empty representation table

o work out how the degenerate orbitals transform under each symmetry element, Figure 4

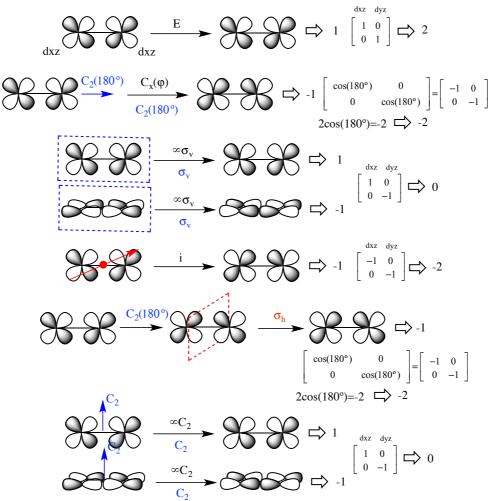


Figure 4 working out the characters

o and fill in the representation table, **Figure 5**

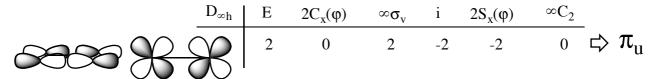


Figure 5 $D_{\infty h}$ filled representation table

- Clearly show using diagrams that $S_4^2 = C_2$ and $S_4^4 = E$ Thus, showing that there are 2 unique operations per S_4 axis in the O_h point group.
 - o using one pAO from each of the two sets of symmetry related pAOs for C_4 and σ_h Figure 6

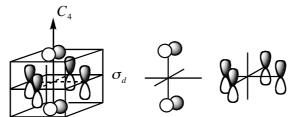


Figure 6 Sets of symmetry related orbitals

 \circ show the effect of two sequential S₄ operations, this is the same as 1C₂ rotation which is also the same as 2C₄ rotations, **Figure 7**

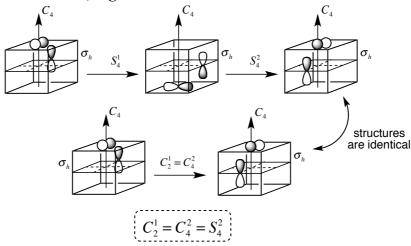


Figure 7 2S₄ operations under the O_h point group

o show the effect of four sequential S₄ operations, this is the same as E, ie the starting structure, **Figure 8**

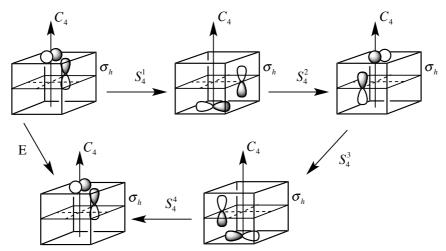


Figure 8 4S₄ operations under the O_h point group

o $(S_4^1 S_4^3 = S_4^{-1})$ are the unique operations (ie a forward and a backward rotation)

- Clearly show using diagrams that S_6^1 and $S_6^5 = S_6^{-1}$ are the only unique operations for each S_6 axis in the O_h point group.
 - o there are $8S_6$ operations in O_h , each C_3 axis can also be thought of as having a coincident C_6 and σ_h mirror plane perpendicular to this axis. these are not symmetry elements of O_h because of the staggered arrangement of the three ligands
 - o all of the S_6 operations are shown in **Figure 9**, only two are unique S_6^1 and $S_6^5 = S_6^{-1}$. $S_6^2 = C_3^1$, $S_6^3 = i$, $S_6^4 = C_3^2$ and $S_6^6 = E$ here I show explicitly that $S_6^2 = C_3^1$ in **Figure 10**

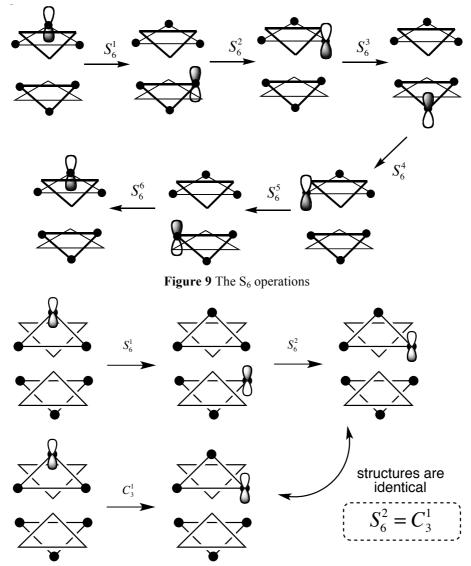


Figure 10 2S₆ operations under the O_h point group