Self-Study Problems / Exam Preparation

- Explain the colour changes observed for the nickel complexes shown in **Figure 1**, which are the following
 - $[Ni(H_2O)_6]^{2+}$ aq is green
 - ♦ [Ni(H₂O)₄en]²⁺aq is pale blue
 - [Ni(H₂O)₂en₂]²⁺aq is blue/purple
 - ♦ [Ni(en)₃]²⁺aq is magenta/violet
 - \circ H₂O is a weaker field ligand than ethylenediamine, this means that water should have a smaller Δ_{oct} , or energy gap between the d-d transitions. The energy gap is related to the wavelength of light absorbed and d-d transitions are in the right part of the (visible) spectrum to influence the colour of complexes.
 - O As water ligands are substituted for en in these complexes Δ_{oct} splitting will increase as there is a stronger σ-FO interaction between the TM and the en ligands, the "e_g" MOs will rise in energy. Water is a weak π -donor and the energy of the antibonding "t_{2g}" MO interaction will be reduced on removing water, increasing Δ_{oct} .

Figure 1 colour changes in Ni complexes.¹



Figure 2 Colour wheel.²

- o Using the colour wheel, Figure 2
 - ♦ [Ni(H₂O)₆]²⁺ aq is green, which means it must <u>absorb in the red</u> part of the spectrum ie low energy region.
 - [Ni(en)₃]²⁺_{aq} is magenta/violet which means it must <u>absorb in the yellow</u> part of the spectrum, ie a mid energy region.
 - orange sits between yellow and red, and would indicate an intermediate absorption between these two extremes, the transmitted colour is blue
- H⁻ and R⁻ are appear relatively high in the spectrochemical series (ie as strong field ligands). Use MO diagrams to explain how this occurs, when these ligands have no π^* -orbitals.
 - o H⁻ and R⁻ are strong σ-donors, this means they have σ-orbitals which are relatively high in energy and thus interact more strongly with the dAOs of the metal, raising the energy of the e_g orbitals more than ligands like NH₃ or H₂O, **Figure 3**

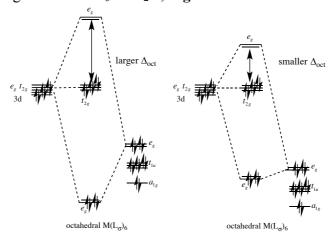


Figure 3 variation in the octahedral splitting parameter

¹ Image from p16 of Metal Ligand Bonding by R. Janes and E. Moore RSC, Cambridge, 2004.

² Image from http://chemwiki.ucdavis.edu/Inorganic_Chemistry/Crystal_Field_Theory/Colors of Coordination Complexes, downloaded 1 Dec 2014

Generate the sigma FOs for 6L_σ arranged in an octahedral from a fragment L₄ (equatorial ligands) and L₂ (axial ligands), Figure 4

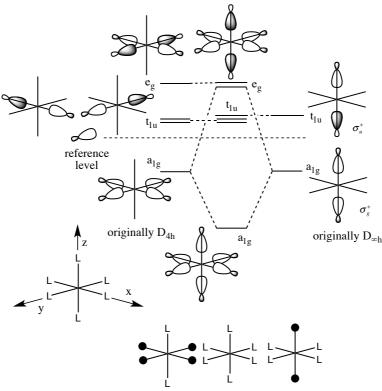


Figure 4 Forming the 6L fragment orbitals

- o the L₄ and L₂ fragments are assumed known
- because these fragments are not identical we need to determine their symmetry under the O_h point group
- o L_2 fragments originally belong to the $D_{\infty h}$ point group:
 - bonding L₂ FO is totally symmetric in $D_{\infty h}$ this is σ_g^+ in O_h this is a_{1g}
 - antibonding L₂ FO is p_z like in $D_{\infty h}$ this is σ_u^+ in O_h this is one of a degenerate set t_{1u}
- \circ L₄ fragments originally belong to the D_{4h} point group:
 - ♦ totally bonding L₄ FO is totally symmetric in D_{4h} this is a_{1g} in O_h this is a_{1g}
 - ♦ 2 degenerate L₄ FO are p_x and p_y like in D_{4h} this is e_u in O_h this is one of a degenerate set t_{1n}
 - antibonding L₄ FO is dx^2-y^2 like in D_{4h} this is b_{1g} in O_h this is one of a degenerate set e_g
- \circ combining FOs of the same symmetry, that is the a_{1g} MOs we form a bonding antibonding pair, then we need to determine the symmetry of the formed MO under the O_h point group
 - ♦ bonding MO for L₆ is totally symmetric a_{1g}
 - \bullet antibonding MO for L₆ is dz² like which is one of a degenerate set e_g
- o we then need to decide where they sit in terms of energy
 - determine a reference line for a single sigma L orbital
 - the fragment bonding orbitals will lie below this line
 - in L₂ the FO splitting will not be large because the orbitals are two bonds apart
 - in L₄ only the totally bonding FO will lie below the reference
 - ♦ the p type combination will lie just above the reference, there are only two orbitals interacting and they are far apart
 - ♦ the 4 and 5 component fragments are more antibonding due to the closer through space interactions

• Annotate a C_{4v} MO diagram identifying the short cuts used to determine the new symmetry labels of the fragment orbitals, **Figure 5**

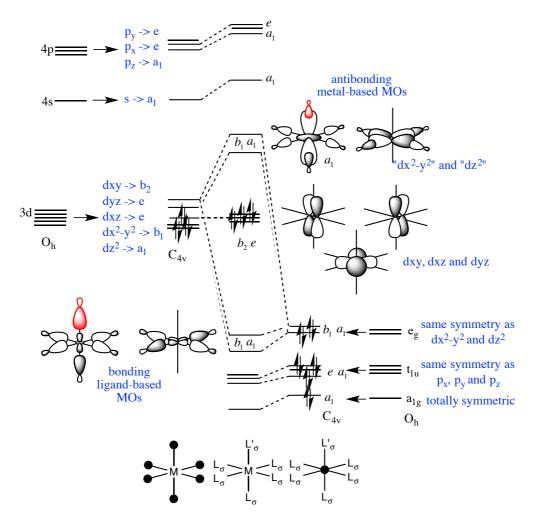
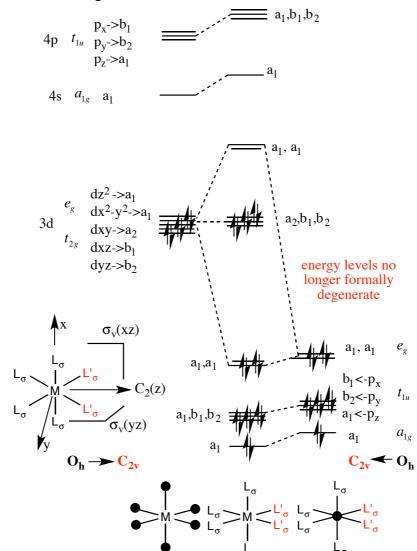



Figure 5 annotated C4v MO diagram

- Which symmetry elements are lost from the D₆ point group to generate the C_{3v} point group?
 - $\circ~$ The D_{6h} point group has symmetry operations E, 2C₆, 2C₃, C₂, 3C₂', 3C₂'', i, 2S₃, 2S₆, σ_h , $3\sigma_d$ and $3\sigma_v$
 - o The C_{3v} point group has symmetry operations E, $2C_3$, and $3\sigma_v$
 - $\circ~$ Thus the lost operations are: C2, 3C2', 3C2'', i, 2S3, 2S6, σ_h , and $3\sigma_d$

- Determine the energy diagram for an "octahedral complex" cis-M(L'_{σ})₂(L_{σ})₄ where (L'_{σ}) and (L_{σ}) are different σ -bonding ligands, **Figure 6**
 - o we assume that there is little effect on the orbitals
 - o the major change is in the symmetry labels for the FOs and MOs
 - o these are determined using the short-cuts

Figure 6 MO diagram for reduced symmetry cis-M(L' $_{\sigma}$)₂(L $_{\sigma}$)₄ complex