In Class Activity

- draw and annotate bonding and antibonding FOs for the π and π^* orbitals of trans-M(L_{σ})₄(CO)₂, the first one shown in **Figure 1**
 - o remember to keep each ligand FO "together" ie as the π or the π^* FO
 - \circ then take the π FOs and form the bonding and antibonding pair
 - o then take the π^* FOs and form the bonding and antibonding pair

don't forget there will be an equivalent set of ligand FOs orientated along the y-axis, so that we will have two bonding π - π FOs, two anti-bonding π - π FOs, two bonding π *- π * FOs, and two anti bonding π *- π * FOs

overall this FO is bonding

Figure 1 trans-M(L_{σ})₄(CO)₂ and one of the ligand π -FO combinations

symmetry ligand π -FOs

Figure 2 π and π * ligand FOs

- check the symmetry guess for the new p_{π} -FOs, I will do one as an example
 - o the π^* π^* set are degenerate (aligned along p_x and p_y axis)
 - o the only options are e_u and e_g
 - o for u both orbitals must change sign under inversion
 - o for g both orbitals must remain unchanged under inversion
 - o the π^* π * set must be e_g