Molecular Orbitals in **Inorganic Chemistry** Prof. P. Hunt p.hunt@imperial.ac.uk Rm 110F (MSRH) ### almost. finished! ### **Your Feedback** **⊚87% have seen the web-site** Great! what have been the easiest parts of the course? "stuff from last year" symmetry, assigning symmetry elements, using character tables MO diagram of diatomic, revision, water, first 2 lectures what have been the hardest parts of the course? quantum mechanics part Walsh diagrams, mixing energies: FO energy levels, estimating splitting, relative MO energies symmetry adapted orbitals deciphering the LCAO from "real" MOs assigning bonding/antibonding character constructing full MO diagram octahedral TM-MO diagram, complex MO diagrams with multiple fragments last two lectures ### **Lecture 8 Outline** your feedback! $\Theta \pi$ -back-donation **⊚**a real example! 2 ### Your Feedback did you find the problems classes useful? 92% YES! what did you like? Great! I work hard and in my own time to make good resources for you. perfect! very clear explanation on each part of building the MO diagram good to get the steps clear in my mind liked we attempt the answer ourselves first, then you presented the answer the immediate feedback was useful able to discuss hard questions with peers had a chance to ask questions how could they be improved?? Mixed opinion! go faster / go slower! would have liked to cover mixing, harder examples > focus on fundamentals many harder problems with very good model answers ### **Feedback** ### Symmetry adapted orbitals H₃ from problems class Notes from an old lecture available on-line! Check out "questions answered" page on the web more on FO energy levels and splitting practice helps all with extensive model answers! 5 ### **Feedback** ### More Examples & Problems! Lecture 1: improper rotations, borazine, AH₄ molecule Lecture 2: BeH2, linear OH2, CH2, Problems class: BH3, D3h NH3, Walsh diagram/mixing and C3v NH3 adduct H3B<-NH3 $\,$ Lecture 3: HFH⁻, working with QM equations, Huckel allene anion (C₃H₅)⁻ L3 Additional: advanced diatomics CN-, CO, N₂ Lecture 4: old exam questions H₂CN-, I₃- Lecture 5: Mo₂, degeneracy dxz/dyz MOs, S₄ rotations O_h, S₆ rotations O_h Lecture 6: colour Ni complexes, H- & R- as ligands in TM complexes, generate L_6 , C_{4v} TM-MO diagram, descent in symmetry D_6 -> C_{3v} , cis-ML₂(L')₄ TM-MO diagram Lecture 7: interpreting Δ_{oct} , the O^2 - ligand in TM-complexes, dAO interactions O_2 end on and O_2 side, full MO diagrams O_2 end on and side on, H_2O as ligand, cis and trans [CoCl₂(NH₃)₄]+ colour changes and MO-diarams, ML₄X₂ X=pi-donor ligand MO-diagram Futarial 2: dAO interactions N. and an 9 side on Tutorial 2: dAO interactions N_2 end on & side on, comparison with CO Problems class1: BH₃ MOs Problems class2: square planar TM-complex MO New problems! given on "The Exam and More Examples" page: $MgCl_2$, H_2CO , 7 PH₃Cl₂, H₄ ### **Feedback** - Collected all problems together! - **⊚** Old exam questions with outline answers all my old exams have extensive outline answers written for you! - Recommended texts contain additional problems - **If you are stuck, ask me** I prioritise student questions p.hunt@imperial.ac.uk 6 ### **Feedback** 8 example in L2 problems start with NH₃ trigonal planar H to fold down to form C_{3v} trigonal pyramidal NH₃ change in point group, so change in symmetry labels use C_{3v} character table $1a_2$ " p_z -like -> a_1 $3a_1$ ' -> a_1 Feedback Try some of the molecules in the "computational examples" on the web Washe your own questions! pick a simple molecule, create a MO diagram do a calculation, does it match your MO diagram? The molecules in the web Fundamental in the control of ### **Lecture 8 Outline** - **your feedback!** - $\bigcirc \pi$ -back-donation - **⊚**ML₆ molecular orbitals - **⊚**a real example! 13 ### **π**-Acceptor Ligands backdonation formally e are in the dAO of M when the MO is formed they are shared with π^* -orbitals of L e are "back-donated" into L ## Summary for Δ_{oct} G-donor ligands $(I < Br < CI < NO_3 < F) < OH < O^2 < H_2O < NH_3 < cn < NO_2 < CH_3 < C_6H_5 < CH_5 <$ 14 ### **π**-Acceptor Ligands **⊚** backdonation formally e are in the dAO of M when the MO is formed they are shared with π^* -orbitals of L e are "back-donated" into L stretching vibration of CO is sensitive to the amount of backdonation other good donor L means M has a greater ability to backdonate increased occupation L π^* -orbitals reduced bond order in L increased bond order M-L bond! reduction in C-O stretch frequency gives measure of σ -donor and π -acceptor ability of other L 15 ### **π**-Acceptor Ligands **⊚** for a strong interaction small Δε large S_{ij} large H_{ij} CO large contribution on C atom for π -acceptor FOs => strong M-L interaction N_2 and O_2 homonuclear so FO contributions are the same size => weaker M-L interaction Important! 17 # T-Acceptor Ligands whow to describe the bonding? traditional oxidation state ideas break down! effects of a large amount of back-donation? cyclic vs linear bonds? strong back-donaton ↑ M-L bond ↓ internal L bond warning bonding is complex MOs are only part of the story!! "quantum" contributions such as Pauli repulsion 19 ### **π**-Acceptor Ligands **⊌** ligands of the form E₂ can bind end-on or side-on end-on generally favoured **multiple** bonds alkenes and alkynes have to bind side-on use π and π^* FOs (see L7) **⊚** careful distinguish between internal ligand bonding and M-L bond remember " σ - π - δ -" are not strict but refer to rotation about the local bond Important! 18 ### Six π -donor or π -acceptor Ligands octahedral **⊚** same process! symmetry is O_h start from σ -framework NO new symmetry new orbitals $\pi\text{-donor:}$ "new" FOs: 6 ligands 2π each = total 12 FOs π-acceptor: 12 additional FOs π-donor: a set t_{1g} + t_{1u} + t_{2g} + t_{2u} π-acceptor: a second set t_{1g}+t_{1u}+t_{2g}+t_{2u} ONLY t_{2g} can interact t_{1g} + t_{1u} + t_{2u} remain non-bonding pictures of active t_{2g} FOs next slide $O_h \qquad \bigvee_{L_\pi}^{Z} \qquad \bigvee_{L_\pi}^{L_\pi} \qquad \bigvee_{L_\pi}^{L_\pi} \qquad \text{axis definition}$ "one of each" T symmetry in O_h - be able to discuss back-bonding and ligand orientation in relation to orbital overlap and energy match of FOs - \bigcirc be able to draw energy level diagrams TM complex with one or two π-donor and π-acceptor (trans) ligands - be able to draw and describe the important MOs Finally See my web-site link to panopto when it becomes available optional background support for beginners optional material to take you a little further links to interesting people and web-sites links to relevant research papers on MOs model answers!! http://www.huntresearchgroup.org.uk/ In-Class Activity complexes can have more than one π-donor or π-acceptor ligand ligand π-antibonding through space L......L bonding anti bonding anti bonding anti bonding ## In-Class Activity complexes can have more than one π-donor or π-acceptor ligand draw the bonding and antibonding combinations of the π and π* ligand FOs In-ligand π-bonding in-ligand π-bonding overall this FO is bonding overall this FO is bonding Two π-acceptor Ligands of focus on the important MOs those of the d manifold include antibonding "eg" MOs add the "t2g" MOs size of FO contributions matters! of focus on the important MOs those of the d manifold include antibonding "eg" MOs add the "t2g" MOs size of FO contributions matters! of focus on the important MOs those of the d manifold include antibonding "eg" MOs add the "t2g" MOs size of FO contributions matters!