Orthogonality

- orthogonality tells us something about the "space" that two orbitals (or more generally two functions) occupy
- if you take two functions, multiply them together \((f_1 \cdot f_2)\) and then add up all the negative and positive areas (ie integrate \(\int d\tau\)) do they exactly balance, ie is the integral zero? If it is then the two functions are orthogonal, they occupy different areas in space, Figure 1

- for example \(\int \sin \theta d\theta = -\cos \theta\) and when integrated over a symmetric range the integral is zero (Figure 2a): \([-\cos \theta]_0^{2\pi} = [-\cos 2\pi] - [-\cos 0] = -1 + 1 = 0\)

- for example consider \(\int \sin \theta \cdot - \sin \theta d\theta\) (Figure 2b)
 - these two functions are not orthogonal, they are plotted to the left, their product is in Figure 2c
 \[
 \int \sin \theta \cdot - \sin \theta d\theta = -\int \sin^2 \theta d\theta
 \]
 \[
 \cos 2\theta = 1 - 2 \sin^2 \theta
 \]
 \[
 = \int \frac{1}{2}(1 + \cos 2\theta) d\theta = \int \frac{1}{2} d\theta + \int \frac{1}{2} \cos 2\theta d\theta
 \]
 \[
 u = 2\theta\quad \frac{du}{d\theta} = 2\quad \text{d}\theta = \frac{du}{2}
 \]
 \[
 = \int \frac{1}{2} u d\theta + \int \frac{1}{2} \cos u \frac{du}{2}
 \]
 \[
 = \frac{\theta}{2} + \frac{1}{4} \sin u
 \]
 \[
 = \frac{\theta}{2} + \frac{1}{4} \sin 2\theta
 \]
 - evaluate over a symmetric range
 \[
 - \int_0^{2\pi} \sin^2 \theta d\theta = \left[\frac{\theta}{2} + \frac{1}{4} \sin 2\theta\right]_0^{2\pi}
 \]
 \[
 = \left[\frac{2\pi}{2} + \frac{1}{4} \sin 4\pi\right] - \left[\frac{0}{2} + \frac{1}{4} \sin 0\right]
 \]
 \[
 = \pi
 \]
 - this is because if you multiply these two functions together, they are always negative and have no positive component to balance them (Figure 2c). You must consider the product of the individual functions!

Figure 1 orthogonality and normalisation

Figure 2 non-orthogonality of two functions

orthogonal:
\[
\int \varphi_i \cdot \varphi_j d\tau = 0 \quad i \neq j
\]

normalised:
\[
\int \varphi_i \cdot \varphi_j d\tau = 1 \quad i = j
\]
there are two ways of representing orthogonality one is using an integral notation and the other
is using a **Dirac notation** which uses two triangular brackets as shown below
\[\int f_1 \cdot f_2 d\tau = 0 \]
\[\langle f_1 | f_2 \rangle = 0 \]

in addition if the integrated product of a function with itself is set to one (by altering coefficients in
the function), then the functions are said to be normalised (Figure 3) you will meet this in your
theoretical methods course.

as another example, think about the orthogonality of the s and p atomic functions
- since we are multiplying two functions together, anywhere the s orbital is zero the product
 \(\phi_s \cdot \phi_p \) will be zero, the same is true for anywhere
 the p orbital is zero, the product will be zero
- this will leave only the portion where the s and p orbital overlap exactly that is non-zero (dark line
 in Figure 4)
- the non-zero portion is 50% light and 50% dark, that is the positive and negative portions of the
 functions, which when summed together will exactly cancel
- **atomic orbitals on the same atom** are constructed to be orthogonal to each other
- the integral of two atomic orbitals on different centers is the overlap integral S
- atomic orbitals are also normalised

thus we don't need to explicitly evaluate rather horrible integrals to determine if it is zero or
not, we have used symmetry. This pictorial tool of orthogonality is especially powerful as it
tells us which integrals need to be evaluated in calculations, and which integrals we know "by
symmetry" are zero. It has a very large impact, and is very important in theoretical chemistry,
spectroscopy, and chemical reactivity.

orthogonal:
\[\int \phi_i \cdot \phi_j d\tau = 0 \quad i \neq j \]

normalised:
\[\int \phi_i \cdot \phi_j d\tau = 1 \quad i = j \]

Figure 3 orthogonality and normalisation

Figure 4 atomic orbitals are orthogonal