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Symmetry Adapted Orbitals
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Figure 1 Symmetry adapted fragment 

orbitals for H3  

 
 

M P

PH3ML3

C
CH3

CH3
CH3

L=

is isolobal with

H

 
Figure 2 Isolobal relationship  

 
 

Introduction 
• so far the fragments used in forming the 

MOs have been atomic orbitals, those for 
a diatomic, or I have provided them for 
you.  In this section you will learn how to 
derive symmetry adapted fragment 
orbitals for use in MO diagrams 

• for example the H3 fragment orbitals 
provided for the tutorial problem on BH3 
(Figure 1) are symmetry adapted 
orbitals.  Symmetry adapted orbitals are 
the fragment orbitals of symmetry 
fragments (as opposed to molecular 
fragments) 

• the easiest way to explain the process of 
generating symmetry adapted orbitals is 
to show you with an example.  The key 
steps taken in this process will then be 
highlighted so that you have a general 
method which can be applied to an 
"unknown" system.  In this section we 
will: 
o generate a reducible representation 
o use the reduction formula 
o use the projection formula 

• We will start with the fragment you have 
already seen and used, that of H3, Figure 
1.  

• In fact the fragment orbitals we will 
derive will not apply to only H3 but to 
ANY system which has a set of 3 sigma-
type (spx) valence AOs arranged in a 
triangle. 
o 6s AOs of gold atoms.   
o 3 sigma type orbitals from R groups 
o 3 sigma type orbitals of ligands L 

• the similarity between the donor orbtial 
of a ligand and the H 1sAO makes them 
isolobal, Figure 2.
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The symmetry adapted orbitals of H3 
• The point group of the molecule must be known before symmetry adapted 

orbitals can be derived.  We will start with the fragments of D3h BH3. 
• The D3h character table is given to the left below.  When deriving symmetry 

adapted orbitals it is important you know where all the symmetry elements are 
located.  A quick reminder of the symmetry elements for the D3h point group 
are given in Figure 3. 

 
Figure 3 Character table and symmetry elements for D3h 

Reducible Representations 
• A reducible representation is 

determined for a basis set of 
symmetry related orbitals on the 
fragment, in this case there are three 
sAOs, Figure 4 

• The reducible representation is found 
by forming a representation table 
(Figure 5) 

•  Determine how the all in-phase 
orbitals (basis functions) transform under each symmetry operation.  For each 
orbital that does not move, we add +1 if the phase remains the same, or -1 if 
the phase changes. 

σv

C2

σh

σv

C2

this orbital
has not moved

these orbitals
have moved
under C2 or σv

C2 or σv

 
Figure 6 generating a reducible 

representation 

 
• For H3 
o under E => all 3 orbitals don't move, 

and there is no phase change =3 
o under C3  => 0 orbitals don't move  
o under C2  => 1 (only the orbital on the 

axis doesn't move, and it's phase stays 
the same, see Figure 6) 

o under σ h  => all 3 orbitals don't move 
o under S3  => 0 orbitals don't move 
o under σ v  => 1 (only the orbital in the 

mirror plane doesn't move, Figure 6) 
• previously we used a representation table 

to determine the symmetry of a SINGLE 
MO composed of 3 sAOs (bonding MO) 

• NOW we are using as a basis, the SET 
OF 3 sAOs 

 
Figure 4 Basis set of 3 sAOs 

 

ED3h 2C3 3C2 σ h 3σ v

3       0       1        3        0       1

2S3

Γ(Η3)  
Figure 5 Representation table 

IMPORTANT
! 
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The Reduction Formula 
• Every reducible representation (ΓR ) can be written as a sum of the irreducible 

representations (Γ IR ) of a point group, where nIR =the number of times a 
particular irreducible representation occurs: 

 
ΓR = nIR

IR
∑ Γ IR  

• for example, any vector can described as a sum of components in the x, y and 
z directions.  The x, y and z components are represented by unit vectors î , ĵ  
and k̂  and the coefficients multiply each of the unit vectors, ie 
v = xî + yĵ + zk̂ .   

• think of ΓR as a vector in the space spanned by the D3h point group (like v is a 
vector in the space spanned by Cartesian coordinates).  The irreducible 
representations are the unit vectors for a point group and the nIR are the 
coefficients that describe the vector in this space.  

• we use the reduction formula to determine nIR (see the box). You must be 
able to write this equation and define each of the symbols. 

 

The Reduction formula 

nIR =
1
h

k • χ IR (Q)• χR (Q)
Q
∑  

h  = number of operations in the group 
Q = a particular symmetry operation 
k  = the number of operations of Q 
χ IR (Q)  = the character of the Irreducible 
 Representation under Q 
χR (Q)  = the character of the Reducible  
 Representation under Q 
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• component terms of the reduction 
formula are shown for the C3v 
character table in Figure 7 
o h=the number of operations in the 

point group and for C3v this is 
1E+2C3+3σv=6 operations 

 
 
 
 
 
• we start by working out the number of times (n ′A1

) the irreducible 
representation ′A1  contributes to the reducible representation of H3: 

nIR =
1
h

kχ IR (Q)χR (Q)
R
∑

 

n ′A1
=
1
12

1χ ′A1 (E)χ R (E) + 2χ ′A1 (C3)χ
R (C3) + 3χ

′A1 (C2 )χ
R (C2 )

+1χ ′A1 (σ h )χ
R (σ h ) + 2χ

′A1 (S3)χ
R (S3) + 3χ

′A1 (σ v )χ
R (σ v )

⎡

⎣
⎢

⎤

⎦
⎥  

ED3h 2C3 3C2 σ h 3σ v

3          0            1             3            0            1

2S3

1          1            1             1            1            1A1'

n ′A1
=

1
12

3+ 0 + 3+ 3+ 0 + 3[ ] = 12
12

n ′A1
= 1

 
n ′A1

=
1

12
1•1• 3

E
  + 2 •1• 0

C3
  + 3•1•1

C2
  +1•1• 3

σh
  + 2 •1• 0

S3
  + 3•1•1

σ v
 

⎡

⎣
⎢

⎤

⎦
⎥

Γ[Η3]

 
 

• then we work through the symmetry labels for the group.  For example, I've  
shown that for ′A2  below: 

 

n ′A2
=
1
12

1•1• 3
E

  + 2 •1• 0
C3

  + 3• −1•1
C2

  +1•1• 3
σh
  + 2 •1• 0

S3
  + 3• −1•1

σ v
 

⎡

⎣
⎢

⎤

⎦
⎥

n ′A2
=
1
12

3+ 0 − 3+ 3+ 0 − 3[ ] = 0
12

= 0

 

 
• This is the kind of working that is expected in the exam (as shown for A2' 

above) when I ask you to "Show your working".  You only need to show the 
full working ONCE, after which, for the other irreducible representations, 
you can simply state the answer, or show as much working as you like.  BUT 
people often make simple errors at this stage, I would advise showing the 
some working for each representation calculated in this way as it reduces the 
chances of making such an error. (See short-cuts below for why you might 
choose to do it another way) 

EC3v 2C3 3σ v

1       1       1A1

1       1      -1A2

2      -1       0E (Tx, Ty)

Tz

h=6

k Q

χ IR(Q)

h

Γ IR

 
Figure 7 Components of the reduction 

formula 

IMPORTANT
! 
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Practice: 
Your turn, please determine the number of times the E' and A1” irreducible 
representations contribute to the reducible representation of H3.  Show your 
working. 

 
ED3h 2C3 3C2 σ h 3σ v2S3

A1''

(          )+(          )+(          )+(          )+(          )+(          )

n
A1′′

=
1

12
[ ] =

n
A1′′

=
1

12

Γ(Η3)

 
 

ED3h 2C3 3C2 σ h 3σ v2S3

E'

(          )+(          )+(          )+(          )+(          )+(          )

n ′E =
1

12
[ ] =

n ′E =
1

12

Γ(Η3)
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• I will leave it up to you to practice the rest at home, the results of applying 
this method to all of the irreducible representations is: 

n ′A1
=1 n ′A2

=0 n ′E =1 n ′′A1
=0 n ′′A2

=0 n ′′E =0 
 
• This information is normally 

presented as shown below, and tells 
us how many fragment orbitals need 
to be found, and what their symmetry 
will be.  One non-degenerate orbital 
of a1' symmetry and one doubly 
degenerate orbital of e' symmetry 
(Figure 8). 

 
Γ(Η3)=a1'+e' 

 
• It is easy to make simple mistakes!  n is always a positive integer, so fractions 

or negative numbers indicate a mistake.  It is important that you check your 
answer by adding the irreducible representations to make sure you 
regenerate  the reducible representation, Figure 9. 

 

ED3h 2C3 3C2 σ h 3σ v2S3

1       1       1        1        1       1A1'

E' 2      -1       0        2       -1       0

+

3       0       1        3        0       1Γ(Η3)  
Figure 9 Checking the answer 

 
• Short-cuts should be used, for example once you know that A1' is one of 

the irreducible representations it is easy to see that the other one must be E' , 
Figure 10, without having to go through all of the other symmetry labels.   

 

ED3h 2C3 3C2 σ h 3σ v2S3

1       1       1        1        1       1A1'

2      -1       0        2       -1       0

3       0       1        3        0       1Γ(Η3)

Γ(Η3)-A1' = E'
 

Figure 10 Taking short-cuts 

 

′a1

′e

H H

H

H H

H

H H

H

 
Figure 8 Symmetry adapted fragment orbitals 

for H3  

IMPORTANT
! 

IMPORTANT
! 

Marks are allocated for 
taking the short-cuts! 

Marks are allocated for 
checking the answer! 
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The Projection Operator 
• Now we know the symmetry of the fragment orbitals, we need to determine 

the "picture" for each fragment orbital.  This requires us to determine the 
orbital coefficients (or the C's in the equations below). 

ψ ′a1
= C

1

′a1ϕ s1
+ C

2

′a1ϕ s2
+ C3

′a1ϕ s3

ψ e '(1) = C1

′e (1)ϕ s1
+ C

2

′e (1)ϕ s2
+ C

3

′e (1)ϕ s3

ψ e '(2) = C1

′e (2)ϕ s1
+ C

2

′e (2)ϕ s2
+ C

3

′e (2)ϕ s3

 

• The orbital coefficients are just a numerical value that represents the size of 
the AO contributions to each MO, these are found using the projection 
operator, which is given below.  You must be able to write this equation and 
define each of the symbols. 

The Projection Operator 

PΓ ψ[ ] = 1
h

χ IR (Q)•Q ψ[ ]
Q
∑  

h  = number of operations in the group 
Q = a particular symmetry operation 
ψ[ ]  = operate on an orbital function 

χ IR (Q)  = the character of the Irreducible 
 Representation under Q 

• the reduction formula produced a number (nIR), while the projection operator 
produces a function (the wavefunction of the fragment orbital).  An operator 
always acts on something, normally an atomic orbital function, hence the 
wavefunction in square brackets ψ[ ]  does not mean "multiply by" it means 
"operate on". 

 
• like the reduction formula it is easiest to show you how the projection 

operator works with an example. 
 
• first set up the problem: label each of the 

basis orbitals, this is very important as you 
will see shortly, Figure 11  

 
 
 
• then explicitly identify all of the 

symmetry elements, for example as shown 
in Figure 12 
o it is very important to know which elements 

each basis function lies on 
o for example, that s1 lies on the C2 axis and 

not on either of the C2' or C2" axes 

s2s3

s1
s2s3  

Figure 11 Label the orbitals  
 

z

y
x

σv'

σv''

C3

C2

′C2

′′C2

S3

σh

σv  
Figure 12 Explicitly identify all the 

symmetry elements 

IMPORTANT
! 

IMPORTANT
! 

Marks are allocated for 
labelling the basis 

Marks are allocated for 
showing all the symmetry 

elements 
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• set up a projection table, this is more complex than the reduction table 
because each of the symmetry operations has to be explicitly identified. 

ED3h  C3
1 C3

2

2C3 
σ h C2 ′C2 ′′C2

3C2 

 σ ′σ ′′σ
3σ 

ED3h 2C3 3C2 σ h 3σ v2S3

 S3
1 S3

−1

2S3 

 
Figure 13 Empty projection table 

o up until now we have not differentiated between operations that have been 
grouped together.  For example, we have just used "2C3" however now we 
must compute the effect of each operation C3

1  and C3
2  explicitly.   

o This is why there is no "k" in the projection operator equation 
• pick ONE of the orbitals (s1 say) and work out what happens to this orbital 

under ALL of the symmetry operations of the point group, I've shown the first 
few for the E and the two C3 operations, Figure 14. 

E
Eϕ s1

= ϕ s1

s1 s1

s1
s2

C3
1

C3
1ϕ s1

= ϕ s2

C3
2

C3
2ϕ s1

= ϕ s3

s1
s3

Γ(Η3)=a1'+e'  
Figure 14 Using the projection operator 

• This data is filled in on a projection table as shown below, Figure 15. 

ED3h  C3
1 C3

2

2C3 
σ h

1       1       1        1        1       1       1       1        1        1       1       1A1'

 C2 ′C2 ′′C2

3C2 

 σ ′σ ′′σ
3σ 

Q s1[ ] s1     s2      s3       s1       s3      s2      s1       s2       s3      s1      s3      s2

χ ′A1 (Q)•Q • s1[ ] s1     s2      s3       s1       s3      s2      s1       s2       s3      s1      s3      s2

 S3
1 S3

−1

2S3 

 
Figure 15 the a1' projection table 

• I do not expect you to reproduce diagrams like Figure 14, unless I 
specifically request you to show the effect of a symmetry operation, I DO 
expect to see a projection table, Figure 15, in the exam. 

• The projection table generates components of the projection operator, here 
ψ=s1.  

PΓ ψ[ ] = 1
h

χ IR (Q)•Q ψ[ ]
Q
∑  

IMPORTANT
! 

Marks are allocated for 
showing the expanded 

table 
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• And so the last row of the table has produced the product χ IR (Q)•Q • s1[ ]  for 
each value of Q (the symmetry operations) 

• The projection operator actually calls for the sum of these entries as shown 
below: 

P ′A1
s1[ ] = 1

12
s1 + s2 + s3 + s1 + s3 + s2 + s1 + s2 + s3 + s1 + s3 + s2[ ]

=
1
12

4s1 + 4s2 + 4s3[ ] = 13 s1 + s2 + s3[ ]
 

• thus we have derived the first fragment orbital (Figure 16) this equation tells 
us that each orbital contributes an equal third to the whole fragment orbital 
which is a totally positive combination of all the s AOs 

 

ψ 1 ′a1
=
1
3

ϕ s1
+ϕ s2

+ϕ s3
⎡⎣ ⎤⎦

 
Figure 16 the a1' fragment orbital of H3 

 
• an advantage is that once the first projection table has been generated, the 
Q s1[ ]  components don't change.  But the IR being considered does. 

• producing the two wavefunctions for the degenerate fragment orbitals is 
slightly more difficult, but we start in exactly the same way 

In-Class Activity 
• You try!  Determine the wavefunction for one of the components of the 

degenerate e' MOs 
o fill in the projection table: 

ED3h  C3
1 C3

2

2C3 
σ h C2 ′C2 ′′C2

3C2 

 σ ′σ ′′σ
3σ 

Q s1[ ] s1     s2      s3       s1       s3      s2      s1       s2       s3      s1      s3      s2

χ ′E (Q)•Q • s1[ ]
′E

 S3
1 S3

−1

2S3 

 
 

o Then form the sum: 

P ′E s1[ ] = 1
12 [ ]

P ′E s1[ ] =
 

o finally draw the orbital: 
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• when drawing the orbitals be careful to make each the correct size and phase 
according to your original assignment.  

• to obtain the second fragment orbital make a guess "from inspection" for the 
form of the orbital and then check it against the requirement that degenerate 
fragment orbitals must be orthogonal. 

• How do you make a guess from 
inspection?  In this case H3 can be 
thought of as being made up from H2 
and H.  H2 will have a bonding and 
antibonding combination and the 
single H will be just a plain sAO, 
Figure 17.  The bonding orbital of 
H2 will interact with the H s atomic 
orbital because they both have a1'  
symmetry.  The antibonding orbital 
of H2 will remain non-bonding and is 
therefore a good candidate for the 
other part of the e' pair. 

• now we need to establish if the 
"guessed" fragment orbital is 
orthogonal to the one we found using the projection operator.  Orbitals are 
orthogonal when: 

Sij = fi∫ • f jdτ = 0  
where fi and fj are any functions and dτ represents integration over all space 

• thus we need to evaluate: 

ψ
1 ′e

1∫ •ψ
1 ′e

2 dτ  where 
ψ

1 ′e

1 = 2ϕ s1
−ϕ s2

−ϕ s3

ψ
1 ′e

2 = ϕ s2
−ϕ s3

 

• two pieces of information simplify matters significantly: 
o atomic orbitals overlap where  
o atomic orbitals are normalized 

φi∫ •φ jdτ = sij and φi∫ •φidτ = 1  

o overlap is reciprocal and thus sij=sji 
o sAOs are equidistant and thus s12=s13=s23 

• thus we have all the information we need to evaluate the integral for the two 
fragment orbitals. 

 

ψ
1 ′e

1∫ •ψ
1 ′e

2 dτ = (2ϕs1
−ϕs2

−ϕs3
)∫ • (ϕs2

−ϕs3
)dτ

= 2ϕs1
ϕs2∫ dτ

=2s
 

− 2ϕs1
ϕs3∫ dτ
=s

 
− ϕs2

ϕs2∫ dτ
=1

 
+ ϕs2

ϕs3∫ dτ
=s

 
− ϕs3

ϕs2∫ dτ
=s

 
+ ϕs3

ϕs3∫ dτ
=1

 

= 2s − 2s −1+ s − s +1

ψ
1 ′e

1∫ •ψ
1 ′e

2 dτ = 0

 

H H

HH H H

1 ′a1

1 ′e

already found

already found

guess for the orthogonal orbital

 
Figure 17 Possible degenerate orbitals 
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• the two fragment orbitals are orthogonal, ψ
1 ′e

1∫ •ψ
1 ′e

2 dτ = 0  and thus the 
guessed fragment orbital is a valid one. 

• if you want to know more details about orthogonally there is additional 
information available on my web-site. 

Final symmetry adapted orbitals 
• by combining all of the information obtained during this lecture we are now 

ready to produce the fragment orbitals for H3, Figure 18.  
  

ψ 1 ′a1
=
1
3

ϕ s1
+ϕ s2

+ϕ s3
⎡⎣ ⎤⎦

ψ 1 ′e =
1
6
2ϕ s1

−ϕ s2
−ϕ s3

⎡⎣ ⎤⎦

ψ 1 ′e =
1
2

ϕ s2
−ϕ s3

⎡⎣ ⎤⎦

1 ′a1

1 ′e

 
Figure 18 Final fragment orbitals 

 

• Always ensure you plot the energy levels, label them with the correct 
symmetry, draw the fragment orbitals and then write the correct equation next 
to each orbital.  

Kolb Cycle Abstraction: How to construct symmetry adapted orbitals 
• summarise the steps used to produce symmetry adapted orbitals 
 

Finding Symmetry Adapted Orbitals 
1. determine the basis orbitals for the fragment 
2. identify the point group and locate all of the 

symmetry operations of the molecule 
3. take the all in-phase combination of the basis orbitals 

and produce a representation table 
4. find the contributing irreducible representations using 

the reduction formula and a reduction table 

 nIR =
1
h

k • χ IR (Q)• χR (Q)
Q
∑  

5. determine the orbital coefficients using the projection 
operator and a projection table 

 PΓ ψ[ ] = 1
h

χ IR (Q)•Q • ψ[ ]
Q
∑  

6. if there are any degenerate orbitals find the second 
orbital by guessing and then testing for orthogonally 

7. produce the full fragment orbital diagram 

IMPORTANT
! 
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Key Points: 
• be able to find the reducible representation for a given set of basis orbitals 
• be able to write down the reduction formula and define all the terms 
• be able to use the reduction formula, be able to show all your working for at 

least one example and be able to use all the short-cuts identified 
• be able to write down the projection operator and define all the terms 
• be able to set up and use a projection table and hence find the coefficients for 

fragment orbitals 
• be able to predict and prove the orthogonally of two orbitals for a degenerate 

set 
• be able to produce a clear fragment orbital diagram containing all of the key 

elements (energy levels, symmetry labels, orbital pictures, associated 
wavefunction) 

Homework and/or Tutorial problem: 
• This is an old exam question, Model answers from your tutors, or the web-site 

Consider three oxygen atoms arranged in an equilateral triangle, the 
point group is D3h : 

   

O

O O
  

 
i) Determine the reducible representation for the three pπ orbitals 

(1 mark) 
 
ii) Write down the reduction and projection formulae. Briefly explain 
each of the terms in both formulae. 

(4 marks) 
 
iii) Use the reduction formula to determine the symmetry of the pπ based 
molecular orbitals. Show your working. 

(3 marks) 
 
iv) Use the projection formula to determine the wave function of the pπ 
based molecular orbitals. Show your working.  The molecular orbital 
wavefunctions do not need to be normalised. 

(5 marks) 
 
v) Draw an energy level diagram for the pπ based orbitals. Draw the 
molecular orbital and write the associated equation beside each energy 
level. Label the symmetry of each orbital. 

(2 marks) 

Optional reading is detailed on the web-site 
 


