Self-Study Problems / Exam Preparation Questions

- Construct the symmetry adapted octahedral L₆ ligand FOs from an L₄ and L₂ fragment.
- Annotate a diagram of MO A below, identify and explain the features that are important in evaluating the overall bonding or antibonding character of this MO

- The axial alignment of a transition metal (M) complex MX₂L₄ (where X and L are σ-bonding ligands, is shown in **B** below, the point group of MX₂L₄ is D_{4h}. The ligand fragment orbitals are given, in no particular order, in **C** below.
 - i) Identify the symmetry labels of the metal orbitals, and the ligand fragment orbitals **C(1)** through to **C(6)**

ii) Draw an energy level diagram for MX₂L₄.

(6 marks)

(3 marks)

iii) Identify Δ_{oct} on your diagram.

(1 mark)

Self-Study Problems / Exam Preparation Answers

- Construct the symmetry adapted octahedral L₆ ligand FOs from an L₄ and L₂ fragment.
 - o the L₄ and L₂ fragments are assumed known
 - o because these fragments are not identical we need to determine their symmetry under the O_h point group
 - o L_2 fragments originally belong to the $D_{\infty h}$ point group:
 - bonding L₂ FO is totally symmetric in $D_{\infty h}$ this is σ_g^+ in O_h this is a_{1g}
 - antibonding L₂ FO is p_z like in $D_{\infty h}$ this is σ_u^+ in O_h this is one of a degenerate set t_{1u}
 - o L_4 fragments originally belong to the D_{4h} point group:
 - totally bonding L₄ FO is totally symmetric in D_{4h} this is a_{1g} and in O_h this is a_{1g}
 - 2 degenerate L₄ FO are p_x and p_y like in D_{4h} this is e_u in O_h and is one of a degenerate set t_{1n}
 - antibonding L₄ FO is dx^2-y^2 like in D_{4h} this is b_{1g} in O_h and is one of a degenerate set e_g
 - o combining FOs of the same symmetry, that is the a_{1g} MOs we form a bonding antibonding pair, then we need to determine the symmetry of the formed MO under the O_h point group
 - bonding MO for L₆ is totally symmetric a_{1g}
 - antibonding MO for L_6 is dz^2 like which is one of a degenerate set e_g
 - o we then need to decide where they sit in terms of energy
 - determine a reference line for a single sigma L orbital
 - the fragment bonding orbitals will lie below this line
 - in L₂ the FO splitting will not be large because the orbitals are two bonds apart
 - in L₄ only the totally bonding FO will lie below the reference
 - the p type combination will lie just above the reference, there are only two orbitals interacting and they are far apart
 - the 4 and 5 component fragments are more antibonding due to the closer through space interactions

Figure 1FOs for L₆

• Annotate a diagram of MO A below, identify and explain the features that are important in evaluating the overall bonding or antibonding character of this MO

overall a strongly bonding MO both terminal and bridging H's exhibit primarily bonding interactions

2-nodal planes, but nodes at atomic centers are not as important as nodes in the internuclear region

- 1 mark identify type of interaction s-s, s-p etc as important to bonding strength
- 1 mark identify distance as important to bonding strength

space bonding

- 1 mark for including all types interaction, eg through space interactions
- 1 mark for commenting on the nodes
- 1 mark for specific interactions as shown on diagram
- 1 mark overall bonding character

Generally very well answered, however some comments:

- 1. an over concentration on through bond vs through space arguments, it is primarily the distance that is important. A bond represents a build up of total electron density, an individual MO contributes only a small part to the total density. The MO is able to represent a much larger range of interactions than old 2c-2e "bonding", these two should be treated as separate theories and not conflated.
- 2. the interaction in the center is not pi, this is a symmetry label that refers to a phase change on cylindrical rotation, this is a sigma type interaction. It is very strong and bonding.
- 3. a number of people forgot to mention the nodes!

- The axial alignment of a transition metal (M) complex MX₂L₄ (where X and L are σ-bonding ligands, is shown in **B** below, the point group of MX₂L₄ is D_{4h}. The ligand fragment orbitals are given, in no particular order, in **C** below.
 - i) Identify the symmetry labels of the metal orbitals, and the ligand fragment orbitals **C(1)** through to **C(6)**

(3 marks)

ii) Draw an energy level diagram for MX₂L₄.

(6 marks)

iii) Identify Δ_{oct} on your diagram.

(1 mark)

for the metal this will be b_{1g} (dx^2-y^2) a_{1g} (dz^2) b_{2g} (dxy) and e_g (dxz & dyz) for the dAOs, and a_{1g} (s) and e_g (px & py) and a_{2u} (pz) for the p orbitals. for the ligand FOs C(1) a_{1g} , C(2) a_{2u} , C(3) e_u , C(4) a_{1g} , C(5) e_u , C(6) b_{1g} 1 mark for the metal orbitals and 2 marks for listing the ligand orbital symmetries

Generally very well answered

ii) Draw an **energy level** diagram for MX₂L₄ (pictures of orbitals are not required).

(6 marks)

Generally very poorly answered.

marks:

- 1 fragments and molecule on diagram
- 1 all metal FOs with energies roughly correct
- 2 energy ordering of ligand FOs correct (symmetry labels required)
- 2 MO energies roughly right

6 total

- 1. we assume that the change in ligands has really only effected the symmetry labels and the orbital patterns (both shape and energy ordering) remain similar
- 2. the FOs shown are the "other" possible combination for degenerate L₄ ligands, we can see how these are generated below:

- 3. even if these ligand patterns were confusing you could still determine the symmetry and energy ordering of the ligand FOs just by looking at them (using short-cuts) and considering the strength of the through space interactions
- 4. The pre- "splitting" of the metal d and pAOs is only for ease of analysis, these orbitals are all formally degenerate
- 5. the extent of interaction between a_{1g} and b_{1g} can be difficult to guess so no emphasis was placed on the depth of the bonding MOs, but the anti-bonding ones must lie below the metal sAO (a_{1g})
- ii) Identify Δ_{oct} on your diagram.

(1 mark)

 Δ_{oct} goes from non-bonding dAOs (e_g) up to the highest orbital dominated by dAO character, this will be the highest of of the a_{1g}/b_{1g} MOs (1 mark)