## **Tutorial Questions**

- $N_2$  can interact either side-on or end-on, however end on coordination is almost exclusively found, rationalise why  $N_2$  prefers to coordinate end-on
- Explain using MO theory and appropriate diagrams why M-CO bonds are stronger than M-N<sub>2</sub> bonds in similar TM complexes, for example IrCl(CO)(PPh<sub>3</sub>)<sub>2</sub> and IrCl(N<sub>2</sub>)(PPh<sub>3</sub>)<sub>2</sub>.

## **Tutorial Answers**

- N<sub>2</sub> can interact either side-on or end-on, however end on coordination is almost exclusively found, rationalise why N<sub>2</sub> prefers to coordinate end-on
  - o the MOs for side-on coordinated N<sub>2</sub> are similar to those of ethyne
  - o the MOs for end-on coordinated N<sub>2</sub> are similar to those of CO
  - o orbitals are  $\pi$ -donor and acceptor are dependent on the relative energy level of the FOs
  - o for example the  $\pi^*$ -FOs on  $N_2$  are high in energy and empty therefore they are acceptor FOs
  - o when bound side on  $N_2$  the  $\sigma$ -donor and  $\pi$ -acceptor overlap is not very good
  - o however end on coordination allows for strong  $\sigma$ -donor and strong  $\pi$ -donor interactions



Figure 1 side-on and end-on bonding modes for N<sub>2</sub>

- some points to note
  - o the  $\pi$ -FO on  $N_2$  are too low in energy and do not interact (well) with the metal



Figure 2 FOs that do not interact

o encourage the students to look for bonding "patterns" for example, alkenes and alkynes have FO patterns similar to  $N_2$ , however they cannot bind end-on due to the presence of H-atoms



Figure 3 look for similarities in bonding FOs

- Explain using MO theory and appropriate diagrams why M-CO bonds are stronger than M-N<sub>2</sub> bonds in similar TM complexes, for example IrCl(CO)(PPh<sub>3</sub>)<sub>2</sub> and IrCl(N<sub>2</sub>)(PPh<sub>3</sub>)<sub>2</sub>.
  - o consider first the metal dAO part of the TM-MO diagram, shown below for CO



Figure 4 relevant TM-dAO and ligand FOs

o compare and contrast the important occupied MOs for CO and N<sub>2</sub>



Figure 5 relevant TM-dAO and ligand FOs

- o in the  $\pi^*$  FO of CO, the C makes a larger pAO contribution to the FO, this means there is a much larger orbital to overlap with the metal dAO, increasing the splitting energy of the MOs
- o in contrast the  $\pi^*$  MO of  $N_2$  has two equal contributions from each N, reducing the overlap of the "front" N pAO with the metal dAO, decreasing the splitting energy of the MOs
- o the  $\pi^*$  MOs of  $N_2$  lie higher in energy than those of CO. (The combination of degenerate pAOs for  $N_2$  means a larger splitting energy for the  $\pi$  and  $\pi^*$  FOs) The higher energy of the  $N_2$  FOs means reduced delocalisation (ie more

Figure 6 ML(CO)<sub>4</sub> complex, L=CO,N<sub>2</sub>

| complex                | σ-       | π-         |
|------------------------|----------|------------|
|                        | donation | acceptance |
| Fe(CO) <sub>4</sub> CO | 0.51     | 0.28       |
| $Fe(CO)_4N_2$          | 0.28     | 0.14       |

**Table 1** Data from the CDA analysis<sup>1</sup>

uneven orbital coefficients) for the MO. Thus the metal dAO interacts less with the  $\pi^*$  FOs.

\_

<sup>&</sup>lt;sup>1</sup> Y. Chen, M Hartmann and G. Frenking, Z. Anorg. Allg. Chem., 2001, Vol 627, p985