Tutorial Questions - N_2 can interact either side-on or end-on, however end on coordination is almost exclusively found, rationalise why N_2 prefers to coordinate end-on - Explain using MO theory and appropriate diagrams why M-CO bonds are stronger than M-N₂ bonds in similar TM complexes, for example IrCl(CO)(PPh₃)₂ and IrCl(N₂)(PPh₃)₂. ## **Tutorial Answers** - N₂ can interact either side-on or end-on, however end on coordination is almost exclusively found, rationalise why N₂ prefers to coordinate end-on - o the MOs for side-on coordinated N₂ are similar to those of ethyne - o the MOs for end-on coordinated N₂ are similar to those of CO - o orbitals are π -donor and acceptor are dependent on the relative energy level of the FOs - o for example the π^* -FOs on N_2 are high in energy and empty therefore they are acceptor FOs - o when bound side on N_2 the σ -donor and π -acceptor overlap is not very good - o however end on coordination allows for strong σ -donor and strong π -donor interactions Figure 1 side-on and end-on bonding modes for N₂ - some points to note - o the π -FO on N_2 are too low in energy and do not interact (well) with the metal Figure 2 FOs that do not interact o encourage the students to look for bonding "patterns" for example, alkenes and alkynes have FO patterns similar to N_2 , however they cannot bind end-on due to the presence of H-atoms Figure 3 look for similarities in bonding FOs - Explain using MO theory and appropriate diagrams why M-CO bonds are stronger than M-N₂ bonds in similar TM complexes, for example IrCl(CO)(PPh₃)₂ and IrCl(N₂)(PPh₃)₂. - o consider first the metal dAO part of the TM-MO diagram, shown below for CO Figure 4 relevant TM-dAO and ligand FOs o compare and contrast the important occupied MOs for CO and N₂ Figure 5 relevant TM-dAO and ligand FOs - o in the π^* FO of CO, the C makes a larger pAO contribution to the FO, this means there is a much larger orbital to overlap with the metal dAO, increasing the splitting energy of the MOs - o in contrast the π^* MO of N_2 has two equal contributions from each N, reducing the overlap of the "front" N pAO with the metal dAO, decreasing the splitting energy of the MOs - o the π^* MOs of N_2 lie higher in energy than those of CO. (The combination of degenerate pAOs for N_2 means a larger splitting energy for the π and π^* FOs) The higher energy of the N_2 FOs means reduced delocalisation (ie more Figure 6 ML(CO)₄ complex, L=CO,N₂ | complex | σ- | π- | |------------------------|----------|------------| | | donation | acceptance | | Fe(CO) ₄ CO | 0.51 | 0.28 | | $Fe(CO)_4N_2$ | 0.28 | 0.14 | **Table 1** Data from the CDA analysis¹ uneven orbital coefficients) for the MO. Thus the metal dAO interacts less with the π^* FOs. _ ¹ Y. Chen, M Hartmann and G. Frenking, Z. Anorg. Allg. Chem., 2001, Vol 627, p985