210 Quantum Mechanics Test

In the following show all your working

- 1. Determine if the following functions are eigenfunctions of the p_x operator. If yes, identify the eigenvalue, if no, explain why not. Show your working.
 - (b) x^3
 - (c) eikx

$$\Omega f = \omega f$$

$$\Omega = \text{operator}$$

$$\omega = \text{eigenvalue}$$

$$f = \text{eigenfunction}$$

$$\Omega = p_x = \frac{-i}{h} \frac{d}{dx}$$

$$\Omega = \frac{-i}{h} \frac{d}{dx}$$

definition (1 mark) maths (1 mark each)

x³ is not an eigenfunction because the eigenvalue equation does not hold, the function is different on the LHS and RHS of the equation (1 mark)

eikx is an eigenvector because the equation does hold with an eigenvalue of hk. (1 mark) This question is of a familiar format presented in lectures and problems.

2. Discuss the function below, define each of the variables, identify the named functions and quantum numbers, describe the functional components and explain their origins/relevance.

$$Y_2^{-2}(\theta,\phi) = \frac{1}{4}\sqrt{\frac{15}{2\pi}}\sin^2\theta \ e^{-i2\phi}$$

$$\text{10 marks}$$

$$\text{Associated function ques 30 potential forms and solution ques M_2 sin² 0 por ticle on a ring solution ques M_2 mormalisation factor | mark |

Spherical polar factor | mark |

yme here $l = 2$ and $Me = -2$ \\

M_2 = magnetic QN | mark |

L = angular QN$$

1 mark for components given until 10 marks is reached θ and φ are the spherical polar variables/coordinates (1 mark) $Y_l^{m_l}(\theta,\phi)$ is a spherical harmonic (1 mark) and gives rise to the angular nature of AOs (1 mark) 1 angular quantum number and 1=2 (1 mark)

the l=2 is for a dAO (1 mark)

m_l magnetic quantum number and m_l=-2 (1 mark)

the coefficients in the front are the *normalisation* (1 mark)

normalisation provides the "magnitude", and ensures only 2e occupy each orbital, and that orbitals are comparable (1 marks)

 $\sin^2\theta$ is an associated Legendre function (gives 1 QN) (1 mark)

 θ gives the 3D angular shape of the orbitals(1 mark)

 $e^{-i2\phi}$ is the solution for a particle on a ring ϕ (gives the m₁ QN) (1 mark)

φ gives the imaginary part of the wavefunction, and or is the decay feature (1 mark)

The form of this question was a direct "copy" of a problem given in the L7 problems, but not this particular wavefunction.

3. For "particle in a box" wavefunction given below

$$\psi(x) = N \sin\left(\frac{nx\pi}{L}\right)$$
 with $n = 1, 2...$

- (a) derive an expression for the n=3 normalisation coefficient, show your working.
- (b) evaluate N for the n=3 level for a box of length L=2nm, show your working
- (c) **sketch** the n=3 level probability curve on a diagram of the box.

10 marks

normalisation requires $\int_{limits} \psi^* \psi d\tau = 1$ general expression (1 mark) particle in a box n=3 level $\psi = Nsin(\frac{3\pi x}{\tau})$ $\psi = \text{real so } \psi^* \psi = \psi^2$ limits are between 0 and L $\int_{limits} \psi^* \psi d\tau \to \int_0^L N^2 sin^2(\frac{3\pi x}{L}) dx$ express the integral (1 mark) evaluate $\int_{0}^{L} N^2 sin^2(\frac{3\pi x}{L})dx$ we know $\int \sin^2(2ax)dx = \frac{1}{2}x - \frac{1}{4a}\sin(2ax)$ evaluate A (1 mark) where $2a = \frac{3\pi}{I}$ $\int_{0}^{L} N^{2} sin^{2} \left(\frac{3\pi x}{L}\right) dx = N^{2} \left[\frac{1}{2}x - \frac{L}{6\pi} sin\left(\frac{3\pi x}{L}\right)\right]^{L}$ $\left[\frac{1}{2}x - \frac{L}{6\pi}sin(\frac{3\pi x}{L})\right]_{0}^{L} = \left[\frac{1}{2}L - \frac{L}{6\pi}sin(\frac{3\pi L}{L})\right] - \left[\frac{1}{2}0 - \frac{L}{6\pi}sin(\frac{3\pi 0}{L})\right]$ evaluate B (1 mark) $= \left[\frac{1}{2}L - \frac{L}{6\pi}sin(3\pi) \right] - \left[0 - \frac{L}{6\pi}sin(0) \right]$ but $sin(3\pi) = sin(0) = 0$ $=\left[\frac{1}{2}L-0\right]-[0-0]$ evaluate C (1 mark) $= \frac{1}{2}L$ evaluate $\int_0^L N^2 sin^2(\frac{3\pi x}{L})dx = 1$ $N^2 \frac{1}{2}L = 1$ final expression (1 mark) $N = \sqrt{\frac{2}{I}}$ 6 marks total

evaluating for L=2nm (2 marks)

$$N = \sqrt{\frac{2}{L}}$$
 for L=2nm

$$= \sqrt{\frac{2}{20 \times 10^{-10}}}$$

$$= \left(\frac{2}{2 \times 10^{-10}}\right)^{\frac{1}{2}}$$

$$= \left(\frac{2}{2}\right)^{\frac{1}{2}} \left(\frac{1}{10^{-10}}\right)^{\frac{1}{2}}$$
 where $\left(\frac{1}{10^{-10}}\right)^{\frac{1}{2}} = (10^{10})^{\frac{1}{2}} = 10^{\frac{10}{2}} = 10^{5}$

= $\sqrt{1} \times 10^5$ express the probability on a infinite square well, three humps, all values positive (2 marks)

The students have been given the evaluation of the general N as a class problem. Here we have asked for a particular n. This is a very small stretch from the notes. Evaluating the N for a specific length is new, drawing the energy diagram was part of the assignment.