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The Wavefunction 
• All matter has both a wave and a particle like character, the De-Broglie 

relationship   

� 

λ =  ˆ p  tells us that anything that has momentum also has a 
wavelength. 

• We should therefore be writing our molecular wavefunction in terms of a 
description of electrons and nuclei as waves. 

• However, this is too complex, and we assume that the nuclear and 
electronic components can be seperated and that there is no coupling 
between them, ie not terms of the form: Ψnuclear H Ψelectronic  

• The next assumption we make is that the molecular wavefunction can be 
written as a simple product of our electronic and nuclear waves, this is 
the Born-Oppenheimer approximation. 

• This may seem trivial to you, but there is a whole, and very active, 
branch of theoretical chemistry which studies situations where this 
approximation breaks down, and this is not as rare as you might think! 

• Next we make a second standard approximation, the nuclei are assumed 
fixed relative to the electrons, ie the kinetic energy of the nuclei is 
assumed to be zero (TN = 0), this is the "fixed nuclear approximation" 
and is often conflated with the BO approximation. 

• This is not unreasonable as the nuclei are are massive classical particles 
compared to the electrons and hence the electrons see nuclei that are 
essentially fixed in position 

• The nuclear-nuclear interaction is now going to be a constant for any 
given configuration of the unmoving nuclei and we will ignore it from 
now on (it is actually added after solving the electronic Schrödinger 
equation). 

• The nuclei, however, still effect the electrons through the electron-
nuclear coupling potential. 

 

� 

HeΨe = EeΨe   where  

� 

He = Te +Vne +Vee  
 

• Quantum chemical methods are about solving the (time independent) 
electronic Schrödinger equation.  The main effort goes into producing 
more and more sophisticated descriptions for the electronic 
wavefunction, Ψ. 

Hydrogenic Orbitals 
• We have a fundamental problem!  We don't know what the orbitals for 

atoms with more than one electron look like, we cannot solve the 
equations!  We assume they look like orbitals for the one system we can 
solve, the Hydrogen atom.  Solving the electronic Schrödinger equation 
analytically for the Hydrogen atom gives us an analytic expression for 
single electron orbitals. 

• "Analytic" means we can write a formula for something (ie f(x)=). 
"Numeric" means that we don't have a functional form for the 
relationship, (that could mean it doesn't exist, or that we don't want to go 
to the trouble of working it out).  When we solve something numerically 
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we take values of x eg x=1, x=2, x=3 …etc and work out what f(1), f(2), 
f(3) is without knowing the general formula for f(x). 

• Early in solving the Schrödinger equation for the Hydrogen atom we 
transform to spherical polar coordinates and assume that the 
wavefunction can be split into a radial (ie dependent on r) and an angular 
component (ie dependent on θ,φ).   

 

 
Figure 1 Radial distribution functions for 1s,2s,3s atomic orbitals 

• The radial part gives us information on how far from the nucleus the 
electron likes to be (and is associated with the n quantum number, 
Figure 1) 

• The angular part tells us if the electron likes to localise in particular 
regions around the nucleus, and is associated with the l and ml quantum 
numbers which tell us the "shape" of the orbitals in space eg: s, p, d, f. 

• Thus in setting up our equations for an atom or molecule, we cannot say 
what the final orbitals will look like, but we can assume that they will 
look like perturbed one-electron orbitals from the Hydrogen atom. 

• This approximation is surprisingly good for the atomic orbitals, but we 
find that it is quite poor for molecular orbitals.  However, we can 
improve our description of the molecular orbitals by adding more 
Hydrogenic type orbitals than we have electrons.  Now we are using the 
Hydrogenic orbitals as a "basis set" to build up a description of the 
molecular orbitals. 

What are Basis Sets? 
• Basis functions are mathematical entities that we use to describe a 

function in space. I think showing you a simple example is the best way 
to get started.   

• Consider a quite complicated geometric shape (equivalent of our final 
wavefunction), and a basis set of circles (related to our atomic basis set).  

• Figure 2(a) is the shape I want to describe (a car), and Figure 2(b) 
shows how well I could describe this shape with a single basis shape (a 
circle).  I use circles because they are easy to compute and hence reduce 
the cost of a calculation. 
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basis:  

basis:  

basis:  
Figure 2 Basis-Fuctions 

 
• Figure 2(c) shows how well I could do if I allowed my circles to vary 

slightly in size, my basis now consists of two functions, and Figure 2(d) 
shows an even better fit if I add more functions to my basis set. 

• Notice also how the complexity and detail of the car gets better as I use 
more functions.  If I label each circle as a function fi, then my car shape 
can be described as a sum of circles (functions) the centers of which are 
determined by some coordinates (x,y) and the size of which can be 
varied by the coefficient Ci. 

car = Ci
i
∑ fi (x, y)  

• A basis set is thus a mathematical way of describing a complicated 
function using simpler functions.  There are rules governing how these 
functions come together, for example they must remain independent (the 
analogy would be that circles cannot overlap) and they must "span the 
space" of the original function (the analogy would be that the circles 
must be able to fill the space covered by the car).  To exactly describe a 
real function will actually take an infinite number of basis functions 
however in general a very good approximation can be made with fewer 
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functions (the analogy here would be to exactly reproduce the car with 
no gaps and no overlapping). 

• Another way of thinking of basis functions (quite different from the 
above) is as a coordinate space, the unit vectors of which are the basis 
functions.  For example, we can describe a Cartesian vector as 

� 

ˆ r = xˆ i + yˆ j + z ˆ k , where i, j, and k are the usual unit vectors or basis 
vectors, or basis functions for the Cartesian space.  If 

� 

ˆ r  had a component 
outside of Cartesian space, the Cartesian vectors would not be enough to 
describe it.  In this case the basis vectors would not span the space of the 
function (

� 

ˆ r ).  Thus our basis functions (atomic orbitals, AOs) describe a 
space, and a linear combination of these functions, defines a more 
complex function (the molecular orbital, MO) within this space.   

  

� 

MO = c1AO1 + c2AO2 ++ cnAOn = ci
i=1,n
∑ AOi  

• We call it a linear combination because none of the functions is raised to 
a power greater than 1.  The basis above has a dimension, n where n is 
the number of basis functions.  The coefficients in the above equation 
are determined during a calculation.  We optimise them so that the 
energy of our molecule is at a minimum (this is how we tell we have a 
good set of coefficients).  For the more technically minded; we require 

� 

∂E ∂ci = 0  for all 

� 

ci. 

Orbital Basis Functions 
• We could use the atomic orbitals from the solution of the Schrödinger 

equation for the Hydrogen atom as a basis to describe the orbitals of a 
molecule: 

Z=atomic charge on the nucleus, and  a = 4πε0 
2 mee

2 = 0.5292Å . 
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• If you look at the radial component of the Hydrogen orbitals you will see 

that they have a common exponential factor ψ ∝ e−Zr a that is modified 
by a special type of polynomial (called an Associated Laguerre 
function).  The angular part are just Sperical Harmonic functions 

� 

Y (θ,φ ) 
 

AO=> N polynomial in r (n−1)( )e−ζ r aY (θ,φ)  
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• However we don't use exactly these same orbitals because the 
polynomials are too complex (we keep the spherical harmonics because 
they are relatively simple). 

• The orbitals we actually use are called "Slater Type Orbitals" (or STO's 
for short, remember this acronym, as it is used frequently).  Slater Type 
Orbitals resemble atomic orbitals closely. 

STO=>Nr (n−1)e−ζ r aY (θ,φ)  

• However, as even STO can be difficult to deal with mathematically, 
another type of basis function is often used, these are "Gaussian type 
orbitals" (or GTOs). 

GTO=>Nrle−ζ r
2

Y (θ,φ)  

• N=normalisation factor, this allows functions to be compared on the 
same footing.  ζ is not same for each orbital type (I've just used it to 
simplify the expressions). 

 

 
Figure 3 Comparison of a s-type Atomic Orbital, STO and GTO 

 
• Slater type orbitals have the correct functional behaviour near the 

nucleus, ie a cusp and decay in the correct way at long distances (Figure 
3).  Gaussian type orbitals provide a relatively poor description of the 
atomic orbitals, they have a finite value at the nucleus and decay too 
quickly (thus underestimating long range interactions). 

• The incorrect decay of the gaussian is due to the gaussian having an 
exponential in r2 while the STO has an exponential in r.  Typically it will 
take 3 or more gaussians to describe one atomic orbital, but they are 
very efficient.  In calculations the time taken to evaluate 3 GTOs is 
actually less than the time it takes to evaluate one STO! 

• Thus, in general, GTOs cannot describe well electron density near the 
core, or well away from the atom.  This means that properties which 
depend on electron density near the core (like NMR), or far away from 
the atom (such as in negatively charged species, or in H-bonding) have 
to be treated vary carefully. 

• However, the STOs are not perfect either, note that the polynomial in r 
has been replaced by a single power of r, thus the STO does not have the 
proper number of radial nodes and does not well represent the inner part 
of an orbital. 
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• In both cases there is no loss in accuracy as long as enough of these new 
functions are used such that there is an adequate description of the final 
molecular orbitals.  We use one or the other of these functions as basis 
functions, we never mix basis function types. 

Gaussians 
• Most quantum chemical codes use Gaussians for basis sets, so to 

understand the designation of a basis set you need to understand 
something about Gaussian functions.  Gaussian is the general name 
given to functions of the form: 

� 

e−ζ (r−r0 )
2

 (where 

� 

ζ  (Greek zeta) is the 
exponential coefficient).  

� 

ζ  determines the spread of a gaussian 
function, for example, a large value of 

� 

ζ  gives a tight gaussian and 

� 

ζ  
small value of a gives a diffuse gaussian, Figure 4.  The position of a 
gaussian is determined by r0, and is normally an atomic center.  The 
height of the gaussian will be determined by a preceding coefficient. 

 

Figure 4: (a) g(x) = e−2.0(x )
2

 and (b) g(x) = e−0.05(x )
2

 

• Gaussians are very useful and computationally efficient because the 
product of any two gaussians is just another gaussian, Figure 5(a), and 
the sum of two gaussians is easily evaluated, Figure 5(b). 

 

    
Figure 5 (a) solid:

� 

g3(x) = g1(x) * g2(x) , (b) solid:

� 

f (x) = g1(x) + g2(x), where the dotted 

function 

� 

g1(x) = e−0.1(x+1)2 and dashed function 

� 

g2(x) = e−1.0(x−1)
2

 
 

• This property is very important in quantum chemistry because we have 
to evaluate integrals of the form given below.  The first is called a "4 



P. Hunt, Handout 2 7 

center" integral and is easily reduced to a "2 center integral" when using 
gaussians. 

g1g2
1
r12
g3g4 dτ =∫ ga

1
r12
gb∫ dτ  

Minimal Basis Set 
• The STO coefficients and exponents are fit to a numerically determined 

ie "real" atomic orbital.  Thus as the 1s AO of carbon differs from the 1s 
AO of oxygen, so the STO for each of these 1s AOs will differ. 

• A "minimum basis set" uses 1 STO to describe each atomic orbital in the 
ground state of an atom.  For shells with more than one angular 
component this means one function for each angular component.  For 
example we need three 2p STO for the 2p valence shell because the 
electron spends 1/3 of its time in each 2p orbital (eg 2px, 2py, 2pz). 

• For example: 
H 1s1  one 1s STO 
Li 1s22s1 one 1s STO + one 2s STO 
C-F 1s22s22pn one 1s STO + one 2s STO + three 2p STOs  

 
• A minimal basis set is just that, minimal, they have significant 

deficiencies. 
• For example, all the atoms in a row will have the same basis set (see C, 

N, O above).  They may have the same form of basis set, but for each 
atom the coefficients and exponents will be different.  This means that 
the atoms at the beginning of a row will have a better description per 
electron than those at the end. 

• The radius of each orbital is set so the orbitals cannot expand or contract 
to adjust to the molecular environment.  For example if we added an 
electron to form a negative ion, the radial extent of the orbitals could not 
change.  Also as you move along the row more electrons are added into 
the same "space", this increases electron-electron repulsions which may 
otherwise have been alleviated by a slight expansion in the orbitals. 

• The shape of each orbital is set, and cannot respond to any local 
anisotropy (ie an unsymmetrical environment).  For example in HF the 
hydrogen 1s electron is attracted toward the F atom, but it cannot move 
because the 1s orbital is spherical. 

• We never make a Gaussian minimal basis set as the gaussians make too 
poor an approximation to the real atomic orbitals.  However, there is one 
type of basis set called a STO-nG basis.  It starts with a minimal STO 
basis (ie with one STO describing each atomic orbital), the STO 
exponents are optimised for the atomic orbital, and then each STO is 
modelled by a linear combination of n-Gaussians, where the coefficients 
and exponents of the Gaussians are fitted to the STO. 

Note that I have used "fit" rather than "optimised" when talking about the 
procedure for determining the coefficients of the gaussians.  For these 
basis sets, the STO are optimised, ie their coefficients and exponents are 
found by minimising the energy in an atomic calculation, they are then 
fixed.  The gaussian coefficients and exponents are found by 
determining the least error when comparing the two functional forms. 
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• For example, if we use 3 gaussians to model each STO of our minimum 
basis set, then the basis set is called the "STO-3G" basis set, Figure 6.   

 
Figure 6: Sum of three 1s gaussians for oxygen 

 
• consider one orbital on an atom in a molecule: 

d1 STO[ ] = d1 c1g(α1) + c2g(α2 ) + c3g(α 3)[ ]  
o the exponents inside the STO have been pre-optimised to an 

atomic system (ie if we used this atom in a different molecule 
these would remain the same)  

o the GTO coefficients ci and exponents αi (i=1,3) are fixed (fitted 
to the atomic STO) 

o d1 is the only variable which is optimised during a normal 
calculation 

• There is an increasing hierarchy of basis sets of this type, that uses an 
increasing number of gaussians to describe each STO.  In general the 
more gaussians we use to describe the STO the better the fit.  (However, 
there does come a point where the gaussians become linearly dependent 
and then adding more functions is not useful).  

 
possibilities are: 
STO-3G 
STO-4G 
STO-6G 
 

 
• Some real numbers are shown below for an STO-3G basis set.  

 
 1S   3 1.00  
       .1307093214E+03   .1543289673E+00   
       .2380886605E+02   .5353281423E+00 
       .6443608313E+01   .4446345422E+00 
 2S    3 1.00 
       .5033151319E+01  -.9996722919E-01   
       .1169596125E+01   .3995128261E+00   
       .3803889600E+00   .7001154689E+00   
 2P   3 1.00 
       .5033151319E+01   .1559162750E+00 
       .1169596125E+01    .6076837186E+00 
       .3803889600E+00    .3919573931E+00 

 
 
 
the first set of numbers describe the 1s AO 
lets look at the first line:  S   3 1.00 
S=s orbital 
3=number gaussians 
1=coefficient for the whole orbital  
then lines 2,3,4 list the exponent first (ie 
ζ1 ) and the coefficient second (ie c1 ).

 

optimised fitted 
1-STO AO n-GTOs 
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• Remember we have taken an atomic orbital (real orbital), then found the 
best Slater type orbital that resembles it, but the STOs (complex 
function) are too difficult to use in calculations so we fit Gaussian type 
functions (simple function) to the STO for computational ease.  We then 
vary a coefficient to the STO which determines its contribution to a MO 
(the coefficients to the GTO "inside" the STO remain fixed). 

• Producing basis sets may sound simple, but there are complexities and 
details (which we will not be discussing) which mean this procedure is 
not trivial.  There are people who spend most of their research lives 
producing very good basis sets for the rest of us to use. 

• Not all atoms have basis sets!  Especially for heavy atoms a basis set 
may not exist.  

n-Zeta Basis Sets 
• We can improve the situation by using more than one STO or more than 

one GTO to describe each atomic orbital, this allows the basis set to 
better represent the real electron density.  I'm going to just refer to STOs 
in the following but the same applies for GTOs. 

• For example, if we have a negative ion, and we have only a single frozen 
orbital the mutually repulsive electrons cannot move away from each 
other, however if we have a basis set that has a component with a small 
exponent (leading to a diffuse orbital) and a larger exponent, then the 
electrons can "move" into the more diffuse orbital, by increasing the 
coefficient for the diffuse orbital. 

 

 
 

• A double zeta (DZ) basis set has 2 STOs for each AO, a triple zeta (TZ) 
basis set has 3 STOs and a quadruple zeta (QZ) basis set has 4 STOs per 
AO, and so on.  Why do we say "n-zeta" basis set?  This is because the 
exponent (

� 

ζ n ) is the Greek letter "zeta".  For example, a single atomic 
orbital in a TZ STO basis will be described as below where each si 
varies as the calculation proceeds: 

AO = s1STO(ζ1) + s2STO(ζ2 ) + s3STO(ζ3)  
 

• In order to quickly see how many functions are used for a particular 
atom in a calculation a short hand notation has been developed to 
indicate the number of functions.  The total number of s, p, d etc sets of 
functions is specified within round brackets.  (Don't forget for all the 
pAOs we need a set of 3STOs one for each of the px, py and pz AOs)  For 
example: 

H 1s1  DZ (2s) 
   TZ (3s) 
 
C 1s22s22p2 DZ (4s2p)  

(eg 2 (1s)STOs + 2 (2s)STOs + 2sets of 2pSTOs) 
   TZ (6s3p) 

+ c2c1 negative ion c1 small c2 large

+ c2c1 positive ion c1 large c2 small
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• In general all the atoms in a molecule should have the same kind of basis 
set and so the shorthand notation is given only once.  However, 
Hydrogen is often a special case and its basis set is given after the 
heavier elements.  For example, for the first row elements: 

DZ basis (4s2p,2s) 
TZ basis (6s3p,3s) 

• There are also cases where the 3d TM or 4f Actinides and Lanthanides 
are treated slightly differently from atoms in the first and second row of 
the periodic table, in this case additional designators can be given (3rd 
row, 1st and 2nd row, H) 

Valence n-Zeta, Contracted and Split-Valence Basis Sets 
• Increasing the number of STOs increases the computational cost 

substantially.  We can be smarter about how we improve our orbital 
description. 

• We can split our basis set into a core and a valence component, core 
orbitals are described by a single STO, while the chemically important 
valence orbitals are described by more STOs.  Over time this 
approximation (as it relates to basis sets) has been proven to be an 
extremely good one.  When this approximation is used we say the basis 
is a "Valence n-Zeta" basis set, eg VDZ (valence double-zeta), VTZ 
(valence triple-zeta), VQZ (valence quadruple-zeta) and so on. 

• For example: 
 

C 1s22s22p2 (3s2p,2s) VDZ basis 
(eg 1 (1s)STO for the core + 2 (2s)STOs + 2sets of 2pSTOs, and 2 (1s)STOs for 

the hydrogen atoms) 
 

• However, while the core density does not move like the valence density, 
describing it well is very important in terms of the total energy.  Most of 
the "energy" comes from electrons near the nucleus, they experience the 
largest forces (potentials) and they go faster, have more kinetic energy.  
To obtain the best energies you must have a good description of the core 
electrons.  It makes sense therefor to expand the core STOs using a 
much larger set of STOs than we do the valence STOs. 

• When we do this we start with "primitive" guassian functions, which we 
"contract" in a specific pattern.  Overall the basis set is less flexible once 
contracted, but the reduction in the computational cost is significant 
especially for large basis sets.  The use of contracted basis sets is almost 
ubiquitous in computational chemistry today. 

 
for example 3 primative gaussians are completely contracted into one STO: 

 
STOcore = d

var iable
 {c1g(α1) + c2g(α2 ) + c3g(α 3)}  

 
• It has also been found that the inner part of the valence orbitals can be 

contracted (ie frozen).  When this is done, the valence basis set is said to 
be "split".  

 
for example 3 primative gaussians are contracted in a pattern of 2:1 into one STO: 

 
STOvalence = d1

var iable
 {c1g(α1) + c2g(α2 )} + d2

var iable
 {c3g(α 3)}  
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• The type of contraction is also indicated using the shorthand notation, 

first the primitive basis set is given in round brackets, and the 
contraction in square brackets. 

the basis in the examples above is 3-21G described as a      (6s3p,3s)->[3s2p,2s] 
and is not quite a full VDZ gaussian basis because of the core description 

Types of Basis Sets 
• Just as media companies can't agree on a standard format for music, or 

even text files, quantum chemists cannot agree about basis sets.  Part of 
the problem is that basis sets are (and must be) specific to the system 
and properties to be studied. 

• There are two main types of basis set that are most commonly used, 
these are the basis sets developed by Pople and co workers and those 
developed by Huzinaga & Dunning.  Of these contracted double and 
triple zeta split valence basis sets are very common.  Of course there are 
other varieties out there, these two are just the most common. 

• These basis sets have been used for some time now and are well tested, 
their accuracy (good) is well established.  In general, the Pople basis sets 
are considered less accurate than the Huzinaga and Dunning sets, but as 
the Pople basis sets were developed first and are widely incorporated 
into many key quantum chemical packages, they have a wider user base.   

• John Pople received the Nobel Prize in Chemistry in 1998 for work in 
part that included the development of these types of basis sets.  Pople 
basis sets are good basis sets for "inexperienced" users, Huzinaga & 
Dunning basis sets are important if you want a highly accurate result. 

Pople Basis Sets 
• Pople basis sets are based on the STO-nG minimal basis sets where n-

contracted gaussians are used for each core orbital and a less contracted 
set are used for the valence orbitals.  These basis sets are sometimes 
called VDZ (or VTZ) but in fact are not quite of this quality because 
they are based on a minimal description of the core orbitals.  In addition 
the s and p orbitals of the same shell have the same exponents, and same 
contraction pattern.   

• You have already met the 3-21G contracted basis set.  In this basis 3 
contracted primitive gaussian functions are used for the core and 3 
primitive gaussian functions contracted in the pattern of 2 and 1 are used 
for the valence orbitals.  
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• The 4-31G basis is also derived from the STO-4G basis.  (Note that the 
final contraction is the same as that for the 3-21G basis, but this basis is 
slightly better because more GTOs have been used.) 

4-31G (second row element 1s22s22p2) 
core 1s => 1 STO in terms of 4 GTO contracted into 1 GTO 
valence 2s => 1 STO in terms of 4 GTO contracted into 2 GTO in a 3:1 pattern 
valence 2p => 1 set of STOs each in terms of 4 GTO contracted into 2 in a 3:1 
pattern 

designation (8s4p,4s)->[3s2p,2s] (not quite a VDZ gaussian basis) 
 

• The 6-31G basis is slightly different again.   
6-31G  

core 1s => 1 STO in terms of 6 GTO contracted into 1 GTO 
valence 2s => 1 STO in terms of 4 GTO contracted into 2 in a 3:1 pattern 
valence 2p => 1 set of STOs each in terms of 4 GTO contracted into 2 in a 3:1 
pattern 

designation (10s4p,4s)->[3s2p,2s] (not quite a VDZ gaussian basis) 
 

• The 6-311G basis is also slightly different. 
6-311G 

core 1s=> 1 STO in terms of 6 contracted GTOs contracted into 1 GTO 
valence 2s => 1 STO in terms of 5GTO contracted into 3 in a 3:1:1 pattern  
valence 2p => 1 set of STOs each in terms of 5GTO contracted into 3 in a 3:1:1 
pattern 

designation (11s5p,5s)->[4s3p,3s] (not quite a VTZ gaussian basis) 
 

• A rough list of the ordering of these basis sets is STO-3G < 3-21G < 4-
31G < 6-31G < 6-311G  

• The STO-3G basis set is used for rough calculations, and seldom appears 
in published work.  The 3-21G, 4-31G basis sets are low level and are 
often used to make a first guess at geometries before shifting to a higher 
basis set to finish optimising a structure.  These basis sets are sometimes 
used in systems where a core set of atoms is being described well, and 
the outer part less well (peripheral groups), these basis sets are used on 
the outer part.  If you are looking at a calculation that has used one of the 
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"lesser" basis sets, you should realise that there may be substantial 
errors. 

• The 6-31G, 6-311G basis sets (and some related to them which we will 
talk about later) are the work-horse basis sets for many computational 
studies and are a basic standard in published work.  

• Pople basis sets exist for H and the first row of the periodic table and for 
most of the second row and transition metal elements, there are few 
Pople basis sets for higher level atoms.  This is because these basis sets 
were originally designed to treat first and second row atoms and organic 
molecules, they are not parameterised for heavy atoms, and do not have 
high angular momentum functions (f,g,h) which are required to treat 
heavy atoms properly. 

• Warning!  In programs like Gaussian you may give a keyword to call a 
specific basis set, however, you may not get exactly the basis set 
specified by this "name".  What you are getting is a basis set of roughly 
this quality.  You should always go to the package manual and to any 
references supplied with the basis set to ascertain exactly the form of the 
functions used. 

• For example in Gaussian calling the such as 6-311G: "Specifies the 6-311G 
basis for first-row atoms and the McLean-Chandler (12s,9p) → (621111, 52111) basis 
sets for second-row atoms (note that the basis sets for P, S, and Cl are those called 
negative ion basis sets by McLean and Chandler; these were deemed to give better 
results for neutral molecules as well), the basis set of Blaudeau and coworkers for Ca 
and K, the Wachters-Hay all electron basis set for the first transition row, using the 
scaling factors of Raghavachari and Trucks, and the 6-311G basis set of McGrath, 
Curtiss and coworkers for the other elements in the third row." 

• For example calling the 6-311G basis set for Ca returns:  
 
Ca     0  
S   6   1.00 
 202699.0000000              0.000222964       
  30382.5000000              0.00172932        
   6915.0800000              0.00900226        
   1959.0200000              0.0366699         
    640.9360000              0.1194100         
    233.9770000              0.2918250         
S   2   1.00 
     92.2892000              0.4044150         
     37.2545000              0.2963130         
S   1   1.00 
      9.1319800              1.0000000         
S   1   1.00 
      3.8177900              1.0000000         
S   1   1.00 
      1.0493500              1.0000000         
S   1   1.00 
      0.4286600              1.0000000         
S   1   1.00 
      0.0628226              1.0000000         
S   1   1.00 
      0.0260162              1.0000000         

 
P   3   1.00 
   1019.7600000              0.00205986        
    241.5960000              0.01665010        
     77.6370000              0.07776460        
P   3   1.00 
     29.1154000              0.2418060         
     11.7626000              0.4325780         
      4.9228900              0.3673250         
P   1   1.00 
      1.9064500              1.0000000         
P   1   1.00 
      0.7369000              1.0000000         
P   1   1.00 
      0.2764200              1.0000000         
P   1   1.00 
      0.0602700              1.0000000         
P   1   1.00 
      0.0179100              1.0000000         
D   3   1.00 
     15.0800000              0.0368947         
      3.9260000              0.1778200         
      1.2330000              0.4255130 
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Dunning-Huzinaga and Correlation Consistent Basis Sets 
• Huzinaga basis sets are obtained by carrying out atomic high level 

calculations using very large uncontracted basis sets and then 
contracting them.  These basis sets are not split-valence, but fully 
double, triple, quadruple etc valence.  These basis sets are normally 
referred to by the basic acronyms VDZ, VTZ, VQZ etc and then the 
specific contraction in the form (spd)->[spd].  The contraction pattern 
may or may not be specified, but is understood and can be obtained from 
the original papers in which the basis sets were first published.  For 
example: 

 
DZ     TZ 
H  (4s)->[2s]  H  (5s)->[3s] 
first row  (9s5p)->[4s2p]  first row  (10s5p)->[5s3p] 
contraction 6,1,1,1 and 4,1  contraction 5,3,1,1,1 and 4,1,1 

 
• Dunning has produced some "correlation consistent" basis sets based on 

the Huzinaga development for use with methods that recover electron 
correlation.  These basis sets are specified by adding "cc" to the 
Huzinaga specifications.  The basic basis sets are gradually improved by 
adding sets of core (s and p) and then higher angular momentum 
functions.  Unlike the Pople basis sets, there is a systematic addition of 
functions.  The larger sets are very expensive and consist of 30 or 55 
basis functions per atom (for second row), however they recover a well 
defined amount of valence-correlation. 

 
cc-pVDZ:  (9s4p) + 1s1p1d   -> [3s2p1d]     14 functions 
cc-pVTZ:  (10s5p) + 2s2p2d1f  -> [4s3p2d1f]     30 functions 
cc-pVQZ:  (12s6p) + 3s3p3d2f1g  -> [5s4p3d2f1g]     55 functions 

 
cc-pVDZ (recovers 65%) 
cc-pVTZ (recovers 85%) 
cc-pVQZ (recovers 93%) 

Polarization Functions 
• We have improved our description of the valence electrons, in the 

valence n-zeta basis sets.  This has introduced radial variation in the 
symmetry of the electron density around an atom.  We have 
compensated for the additional computational cost of moving to n-zeta 
by contracting the core description. 

• We now need to deal with the polarization of electron density in a non-
spherical manner, ie in a specific direction as occurs in a polar bond.  
We do this by introducing "polarization" functions.  These are just 
functions of a higher angular momentum than the valence shell.  For 
example, mixing some pAO character into an sAO allows it to polarize, 
and the electron density can distort to one side of an atomic nucleus: 
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HOMO orbital polarisation 
function 

s p,d,f 
p d,f 
d f,g 

 
• Polarisation functions also play other important roles.  In any system 

where the electron density can be expected to be polarized (ie will move 
depending on the local environment) polarization functions are required, 
this can be systems where the e-density is easily polarized (eg soft 
atoms), or systems with strongly charged local environment (eg highly 
polar systems), or systems with an external potential (in an electric 
field).  Examples include systems with large dipole moments, atoms 
with a significant polarizability (eg S), anions with large diffuse electron 
clouds (eg I-), compounds with very electronegative or electropositive 
atoms, and molecules exposed to strong electric fields (electrochemical 
or light driven reactions). 

• Polarisation functions are always added as sets, ie a set of 3p functions, 
5d functions, 7f functions.  For Pople basis sets "*" indicates the 
addition of polarisation functions, eg 6-31G*, after the first set of 
polarization functions has been added they are then identified explicitly 
for each atom, and the exponents identified. For Huzinaga basis sets 
polarization functions are indicated by adding P on the end of the 
acronym. 

 
6-31G(d)=6-31G*, 6-31G(2d), 6-31G(2df), 6-31G(3df).   

DZP, VTZ2P, VQZ3P 
 

• Polarisation functions should not be added to a poor basis set, the rule of 
thumb is to have one less n-zeta than you have polarisation functions.  
Thus adding two sets of d-functions (one with smaller and one with 
larger exponents) to 6-31G basis set should not really be contemplated, 
unless you have a very good reason, and some knowledge of the errors 
or artefacts that may creep into your calculations. 

• For systems with large correlation effects large basis sets that include 
polarization functions are required, a TZ2P basis set is considered a 
"minimum" (if it can be managed!) for getting reasonable results.  In 
many organo-metallic and large inorganic calculations a basis set of this 
size often requires the use of a model compound to reduce the number of 
electrons. 

• There is a limit to the functions programs are set up for, normally f but 
sometimes g.  Heavy elements generally have to be treated by "special" 
basis sets, and often the basis set is stated explicitly.  For example a 6-
31G basis sets are only defined up to Kr and only a maximum of 
(3df,3pd) can be added in the program Gaussian.  Other programs will 
have other limits. 

+

s p
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Diffuse Functions 
• Diffuse functions allow us to describe electron density that has spilled 

out from the main occupied orbitals.  These are (s, p and d) functions 
with a small exponent, and they help to improve the description of the 
electron density away from the core (remember that Gaussians have the 
wrong long range decay, so adding extra functions in this region goes to 
improving this). 

• Systems which benefit from diffuse functions include atoms with lone 
pairs (eg N, P, As …), large polarizable atoms (eg I), negatively charged 
species, systems with low lying excited states (3d TMs) and atoms with 
low lying unoccupied orbitals (eg Si, P). 

• Augmented basis sets are good for describing weakly bound complexes, 
eg Van der Waals, Hydrogen bonding, proton affinities, transition state 
barrier heights and strongly polar species. 

• If we want to describe properties that depend on the electron density far 
from the nucleus we will need diffuse functions (eg dipole moments).  If 
higher order properties are required (those that relate to a 2nd or higher 
derivative of the energy, such as the polarizability) then more diffuse 
functions are required. 

• If Pople basis sets are being used a "+" is used before the G for the first 
set of functions, eg 6-31+G, after this any more diffuse functions are 
given explicitly for each atom along with their exponent.  When using 
Huzinaga & Dunning basis sets, "aug" is prefixed to the basis set 
descriptor, for example: aug-cc-pVDZ, if more are required the basis set 
is doubly (d-aug-cc-pVDZ) or triply augmented (t-aug-cc-pVDZ). 

• Diffuse functions come at a cost, they make optimisation unstable and 
add significantly to computing time, more so than other functions.  
There is no point in adding diffuse functions unless the valence and core 
description is already a good one.  In general diffuse functions should 
not be added unless the base basis set is already double zeta (or almost 
double zeta in the case of Pople basis sets).  Normally 2 sets of diffuse 
functions (1s and 3p) are sufficient, however three can be added, in 
which case the valence description should be at least triple zeta. 

Hydrogen 
• Hydrogen atoms need special consideration.  There can be many of them 

in a complex, and adding extensive basis sets and additional functions 
can rapidly make a calculation too large to be performed.  Where 
Hydrogen atoms are not active it is customary to use a reduced basis set, 
one of the simplest ways of doing this is leaving the polarization and 
diffuse functions off the Hydrogen atoms, as these functions are often 
most important for heavy atoms.  Hence when specifying the basis set 
for a calculation the Hydrogen atom basis function are often given 
separately, after a comma: (spd,sp)/[spd,sp]. 

• For example a calculation performed using a 6-31+G basis set will add 
one set of diffuse functions (1s & 3p) to all the heavy atoms only.  The 
6-31++G basis set has one set of diffuse functions on the heavy atoms, 
and onto the Hydrogen atoms as well. 

• The 6-31G*=6-31G(d) basis set adds one set of polarization functions 
(5d for 2nd row and 7f for the 3rd row) to all the heavy atoms.  The 6-
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31G**=6-31G(d,p) basis set adds one set of polarization functions to the 
heavy atoms and a set (3p) to all the Hydrogen atoms. 6-311G(2df,2pd) 
is a very large basis set and adds two sets of d functions and one set of f 
functions to each heavy atom (that’s 24 extra functions per heavy atom!) 
and then 2 sets of p functions and one set of d functions per hydrogen 
(that’s 16 extra functions per hydrogen atom!).  This basis set could only 
be used for calculations on a relatively small system. 

Balanced Basis Sets 
• If you want to compare calculations, they must be carried out using the 

same method and with exactly the same basis set.  This is because we do 
not use infinite basis sets, and there is a substantial error in the absolute 
energies that we calculate.  However, since a large part of this error is 
systematic and eliminated when we compare two numbers we can 
evaluate energy differences. 

• In reality this is quite problematic between research groups as everyone 
uses slightly different basis sets.  Energies determined using different 
basis sets should never be directly compared.  However, if you are 
interested in qualitative information, properties such as geometries, 
frequencies, and NMR, are less basis set dependent and can be compared 
for similar basis sets and methods. 

• If your basis is poorly balanced one thing that can happen is that one 
atom can "steal" basis sets from a nearby atom to improve its own 
flexibility (especially if the other atom has diffuse functions).  Atoms 
don't even have to be bonded, it could be an atom using unoccupied 
(virtual) basis functions from alkyl side-chains or bulky substutents. 

• Even if your basis set is well balanced, this effect can be significant if 
you are comparing numbers of almost equal magnitude. 

• When computing clusters it is possible for atoms in monomer one to 
"use" functions from monomer two.  If each monomer is calculated in 
isolation then there is no problem, but when a weakly bound cluster is 
described this becomes and issue.  Essentially you are using different 
basis sets for each calculation.   

• This is a particular problem if you are trying to model weak bonding 
interactions such as van der Waals interactions, clusters or Hydrogen 
bonds.  In weakly bound clusters there can be a shortenting of 
intermolecular distance and overbinding due to this problem. 

• This error is called the "Basis Set Superposition Error" or BSSE.  When 
the basis sets are "stolen" internally from the same molecule this is 
intramolecular BSSE, when the basis sets are "stolen" from another 
molecule this is intermolecular BSSE.  The issue becomes more 
complex when considering transition states, are there one, two or three 
molecular components and how do you define them.   

• An approximate way of assessing the BSSE is  the "Counterpoise (CP) 
correction" of Boys and Bernardi (Mol. Phys, 1970, 19, p553).  If the 
energy of the complex (or dimer or cluser etc.) ab is computed using 
basis sets A and B and the energy of the monomer computed using basis 
set A, and the energy of the monomer computed using basis set B, to 
determine the association energy we normally calculate:  
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ΔE = Eab
AB − Ea

A + Eb
B( )  

• Then we can determine the stabilisation energy when the extra basis sets 
are present by computing a in the geometry of ab using the AB basis, 
this is achieved by removing the "nuclei and electrons" from monomer b 
but leaving all the basis functions behind.  Ea

AB  is always more negative 
than Ea

A .  These atom-less basis functions are refered to as "ghost 
functions".  The same process can be followed for b to obtain: 

EBSSE (a) = Ea
AB − Ea

A

EBSSE (b) = Eb
AB − Eb

B
 

 
• The BSSE then becomes 

ΔECP = Eab
AB − Ea

A + EBSSE (a) + Eb
B + EBSSE (b)( )

= Eab
AB − Ea

A + (Ea
AB − Ea

A )+ Eb
B + (Eb

AB − Eb
B )( )

= Eab
AB − (Ea

AB + Eb
AB )

 

 
• The Counterpoise correction is not perfect.  The CP can overcorrect, 

because when a is being computed with the basis set AB all the B 
functions are available, but in ab all the occupied orbitals are not 
available.  This can be a particular problem for H-bonded complexes 
studied with small basis sets. 

• In the above derivation we made an implicit assumption that there was 
not a large contribution due to the changing conformation of monomer a 
or b from the isolated system to the interacting system, this adds a 
further level of complexity. 

• The more "monomers" you have the larger the BSSE, so how you split 
your system up can impact on the result.  You can now have two body 
and three body interactions, then how do we sensibly account for these?   

• This becomes a particular issue if you want to compute an intra-
molecular BSSE, how do you divide the molecule up?  You will also run 
into issues of charge and spin-state of the fragments. 

• There are a number of further methods which attempt to evaluate BSSE 
for these more complex cases but these are beyond the scope of this 
course. 

• The BSSE is zero at the limit of a complete basis.  However we seldom 
have the resources to go to this level.  For example, for the water dimer 
we should need a cc-pV5Z basis set (574 basis functions) at the MP2 
level.  However it known that for basis sets of triple-ζ quality BSSE is 
reduced to about 10%.  Nevertheless the problem still arrises if we want 
to calculate structures with more atoms, we must use lower level basis 
sets and then the BSSE is an issue. 

• Another problem arrises with respect to geometry optimisation.  Almost 
exclusively the CP correction is applied to a non-CP corrected optimised 
geometry.  However for a weakly bound system this may induce 
significant changes in intermolecular distances. 
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• Basis sets need to be balanced, that is each electron or orbital needs to 
be described equally well.  This doesn't mean that each atom has exactly 
the same basis set.  For example, using the same basis for Li and F in 
LiF, which is really Li+ & F-, means the basis set for Li+ has more 
functions per electron than F-, and thus the electrons of Li+ are better 
described.  To balance the basis set you should add a set of diffuse 
functions to the F atom. 

• Many computational packages will actually allow you to use poor basis 
sets, and to produce an unbalanced basis.  This is were untrained users 
have problems, as the package will still produce and answer, but it is a 
case of "garbage in, garbage out"! 

• One way of reducing the cost of a calculation is to use better basis sets 
on the chemically active part of a system and then using poorer basis 
sets on the surroundings.  Given the arguments above, it is clear, that 
you must be VERY careful when doing this as it is easy to create 
artefacts and incorrect results. 

Basis Set Hierarchy 
• OK, you say, why don't we max out the number of basis functions, have 

a t-aug-cc-QZ3P basis set?  The simple answer is cost, most packages 
can handle more than 10000 primitive Gaussians, but the time taken to 
do a single cycle, and the cost in memory and disk to store the integral 
information can be extreme.  A rough rule of thumb is that the 
computational effort grows as N4 (up to N7 for high level methods) 
where N is the number of basis functions.  Thus if one cycle of your 
molecule using 100 primitive Gaussians takes 1second, then improving 
the basis set to use 10000 primitives would take ≈3 years per cycle. 
Memory is also required, an order of magnitude calculation has a 10000 
basis job requiring ≈34GB, and higher level methods require more 
memory.  

• In general the smaller the basis the poorer the description, and the larger 
the basis the better the description of a molecule.  We measure how 
good a basis set is by how low we can get the energy.  However, as a 
basis set improves the energy lowers by smaller and smaller amounts 
and gradually we move toward a limit where increasing the basis set 
makes a negligible decrease in the energy.  We call this the "basis set 
limit", these basis sets are extremely large. 

• Each computational method (eg HF, MP2, CCSD(T)) has its own basis 
set limit, and the better the method the more basis functions are required 
to reach the basis set limit.  This convergence behaviour has been well 
studied and means that each method has a well known systematic basis 
set error.  The Huzinaga & Dunning basis sets converge systematically 
to the basis set limit, the Pople basis sets do not. 

• There is always an error due to the fact that a basis set cannot completely 
describe the relevant system (this would require infinite functions, and 
even then you would run into linear dependency problems)  This error is 
called the "basis set incompletemss error" or BSIE. 

• While the energy may converge with increasing basis set descriptions, 
properties do not follow this convergence behaviour.  This means that it 
is very difficult to determine the error due to the basis set in a given 
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property.  Basis sets, in this case, need to be added in a well informed 
and sensible way. 

 
The Pople basis set range Huzinaga-Dunning basis 

set range 
STO-3G 
3-21G 
4-31G 
6-31G(d) 
6-31G(d,p) 
6-311G(2df,2pd) 

VDZ 
VTZ 
VQZ 
cc-pVDZ 
aug-cc-pVDZ 
aug-cc-pcVDZ 
cc-pVTZ 
aug-cc-pVTZ 
aug-cc-pcVDZ 
cc-pVQZ 
aug-cc-pVQZ 
aug-cc-pcVQZ 

 

• In the table above I have listed a hierarchy of common basis sets, note 
that the Pople basis sets are generally of a lower quality than the 
Huzinaga & Dunning, so that the 6-31G ≈ VDZ while the 6-311G ≈ 
VTZ etc.   

• Properties that depend on the electric field, or distortion of the electron-
density require a good description of the tail of the orbitals and thus need 
diffuse and polarization functions.  Properties that depend on the 
magnetic field, nuclear spin, and core electron density need tight 
functions and orbitals with a well defined core region. 

• We have to compromise within the limits of our computational 
resources.  In reality most calculations of larger inorganic systems are 
carried out at the HF, DFT, MP2 level with a medium level basis set 6-
311+G(d,p) in terms of the Pople type basis and cc-pVDZ or cc-pVTZ in 
terms of the Huzinaga & Dunning type basis. 

 

Basis r(OH) α(HOH) 
cc-pVDZ 0.9463 104.61 
cc-pVTZ 0.9406 106.00 
cc-pVQZ 0.9396 106.22 
cc-pV5Z 0.9396 106.33 
cc-pV6Z 0.9396 106.33 

Table 1 H2O geometry as a function 
of basis set at the HF level 

 
Basis r(OH) α(HOH) 

cc-pVDZ 0.9649 101.90 
cc-pVTZ 0.9591 103.59 
cc-pVQZ 0.9577 104.02 
cc-pV5Z 0.9579 104.29 
cc-pV6Z 0.9581 104.36 

Table 2 H2O geometry as a function 
of basis set at the MP2 level 

 
Pseudo-Potentials 

• Pseudo-potentials (PP), otherwise known as Effective Core Potentials 
(ECP) are essential to describing atoms with a large number of electrons 
at a reasonable cost. 

• As atoms get larger the core electrons get further away from the active 
valence electrons, and their participation in bonding can become 
minimal.  However we still require a large number of Gaussian functions 
to describe the core electrons.  In addition for elements below the 3rd 
row, the inner electrons experience a large core charge and are 
accelerated to near the speed of light and a relativistic correction is 
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required.  To include the relativistic terms in the Hamiltonian would be 
very expensive. 

• Previously we discussed replacing the core electrons by a set of 
contracted Gaussians, where only one variable parameter is left.  Now 
we are replacing the core electrons by a set of frozen functions. 
Typically a set of Gaussians is given for each angular momentum 
component. 

• As with the development of basis sets creating PP is a complex, exacting 
and delicate task.  For a group of chemists/physicists it is the primary 
component of their research career.  One key point is that you cannot 
use any basis set with a PP, you must use the basis set constructed for 
use with that particular PP. 

• Many PP and their accompanying basis sets are often already contained 
within libraries attached to your favourite computational code.  In fact, it 
is better to use these libraries as you are likely to make an error when 
entering the details by hand.  Common pseudo-potentials include: 

Los Alamos ECPs of Hay and Wadt 
CEP ECPs of Stevens/Basch/Krauss 

Stuttgart/Dresden ECPs 
Goddard/Smedley ECP 


