Irreducible Representation (IR) Symmetry Labels - The symbols to the far left of the character table are part of "Mulliken notation" defined in the article by R.S. Mulliken, *J Chem. Phys.*, **1955**, 23, p1997 - these symbols are determined by considering whether or not a representation is **symmetric** (positive character) or antisymmetric (negative character) with respect to a set of symmetry operations. - singly degenerate symbols (1 x 1 matrix) - o A is used when the IR is symmetric under C_n or S_n for the highest n in the group - \circ A is also used if there is no C_n or S_n - \circ B is used when the IR is antisymmetric under C_n or S_n for the highest n in the group ## For example: | C_2 | Е | C_2 | | |-------|---|-------|--| | A | 1 | 1 | | | В | 1 | -1 | | - multiply degenerate symbols (n x n matrix) - o E doubly degenerate (and is not the same as E for the identity operation!) - o T triply degenerate - o G has degeneracy of 4 - o H has degeneracy of 5 - The u and g subscripts (the comments made here will make more sense after the next lecture!) - o simply put g indicates a representation that is symmetric with respect to inversion and u a representation that is antisymmetric with respect to inversion - A more complete and mathematical description is as follows: A centrosymmetric group G_i is the direct product of two groups G and C_i or G and i. u and g are determined from the characters that are NOT in BOTH G_i and G, if the character is negative under i then the subscript is u (ungerade=odd), if the character is odd under i then the subscript is g (gerade=even) ### For example: - The Primes - o If the point group contains the operator σ_h but no i, a single prime indicates a representation that is symmetric with respect to a σ_h plane and a double prime a representation that is antisymmetric with respect to σ_h - \circ Be careful with degenerate representations, as the assignment applies to the <u>components</u> and not the whole representation, for example see E' of D_{3h} below. #### For example: | D_{3h} | Е | $2C_3$ | $3C_2$ | $\sigma_{_h}$ | $2S_3$ | $3\sigma_v$ | | |------------------|---|--------|--------|---------------|--------|-------------|----------------| | A_1 ' | 1 | 1 | 1 | 1 | 1 | 1 | | | A_2' | 1 | 1 | -1 | 1 | 1 | -1 | | | E' | 2 | -1 | 0 | 2 | -1 | 0 | (T_x, T_y) | | A_1 " | 1 | 1 | 1 | -1 | -1 | -1 | | | A ₂ " | 1 | 1 | -1 | -1 | -1 | 1 | T _z | | E" | 2 | -1 | 0 | 2 | 1 | 0 | | E' has components (say p_x and p_y) that are symmetric under σ_h : - The 1 and 2 as Subscripts - \circ For non-degenerate representations (A and B) a subscript of 1 indicates the representation is symmetric with respect to a C_2 axis perpendicular to the principle C_n axis, or in the absence of this element, to a σ_v plane. A subscript of 2 indictes the representation is antisymmetric. - o For multidimensional representations, the subscripts 1, 2 ... are added to distinguish between non-equivalent irreducible representations that are not separated under the above rules. # For example: | | | - | | | | | | |------------------|---|--------|--------|---------------------------------|--------|-------------|--------------| | D_{3h} | Е | $2C_3$ | $3C_2$ | $\sigma_{\scriptscriptstyle h}$ | $2S_3$ | $3\sigma_v$ | | | A ₁ ' | 1 | 1 | 1 | 1 | 1 | 1 | | | A_2 ' | 1 | 1 | -1 | 1 | 1 | -1 | | | E' | 2 | -1 | 0 | 2 | -1 | 0 | (T_x, T_y) | | A ₁ " | 1 | 1 | 1 | -1 | -1 | -1 | | | A ₂ " | 1 | 1 | -1 | -1 | -1 | 1 | T_z | | E" | 2 | -1 | 0 | 2 | 1 | 0 | | - Complex Characters ε - o For a number of groups complex characters arise where $\varepsilon = \exp(i2\pi/n)$ where ε can be regarded as an operator that rotates a vector by $2\pi/n$ anticlockwise in the complex plane or an Argand diagram. The two IR with complex characters are normally bracketed. Such point groups are not often encountered with molecules. ### For example: | C_3 | E | C_3^1 | C_3^2 | | |-------|---|---------|---------|---| | A | 1 | 1 | 1 | | | _ [| 1 | ε | ε* |] | | E | 1 | ε* | ε | | ### • Linear Groups o Linear groups have an infinity subscript, eg $C_{\infty V}$ and $D_{\infty h}$. The symbol C_{∞}^{ϕ} indicates a rotation by an angle (ϕ) of any value, including infinitesimal. An infinite number of rotations is therefore possible, and an infinite number of vertical mirror planes $\infty \sigma_{V}$. In these groups Greek symbols are often used rather than the Mulliken notation. In addition, the primes are not used, and are replaced with + or - signs superscript to the Greek symbol, they still however refer to the sign under σ_{V} . The degenerate components do not follow the rules given for the other point groups. # For example: | $C_{\infty_{\mathbf{V}}}$ | Е | $2C_{\infty}^{\phi}$. |
$\infty \sigma_{v}$ | |---------------------------|---|------------------------|-------------------------| | $A_1 = \Sigma^+$ | 1 | 1 |
1 | | $A_2 = \Sigma^-$ | 1 | 1 |
-1 | | $E_1=\Pi$ | 2 | 2cos¢ |
0 | | $E_2=\Delta$ | 2 | 2cos2φ |
0 | | E ₃ =Ф | 2 | 2cos3φ |
0 | | | | |
 |