Irreducible Representation (IR) Symmetry Labels

- The symbols to the far left of the character table are part of "Mulliken notation" defined in the article by R.S. Mulliken, *J Chem. Phys.*, **1955**, 23, p1997
- these symbols are determined by considering whether or not a representation is **symmetric** (positive character) or antisymmetric (negative character) with respect to a set of symmetry operations.
- singly degenerate symbols (1 x 1 matrix)
 - o A is used when the IR is symmetric under C_n or S_n for the highest n in the group
 - \circ A is also used if there is no C_n or S_n
 - \circ B is used when the IR is antisymmetric under C_n or S_n for the highest n in the group

For example:

C_2	Е	C_2	
A	1	1	
В	1	-1	

- multiply degenerate symbols (n x n matrix)
 - o E doubly degenerate (and is not the same as E for the identity operation!)
 - o T triply degenerate
 - o G has degeneracy of 4
 - o H has degeneracy of 5
- The u and g subscripts (the comments made here will make more sense after the next lecture!)
 - o simply put g indicates a representation that is symmetric with respect to inversion and u a representation that is antisymmetric with respect to inversion
 - A more complete and mathematical description is as follows: A centrosymmetric group G_i is
 the direct product of two groups G and C_i or G and i. u and g are determined from the
 characters that are NOT in BOTH G_i and G, if the character is negative under i then the
 subscript is u (ungerade=odd), if the character is odd under i then the subscript is g
 (gerade=even)

For example:

- The Primes
 - o If the point group contains the operator σ_h but no i, a single prime indicates a representation that is symmetric with respect to a σ_h plane and a double prime a representation that is antisymmetric with respect to σ_h
 - \circ Be careful with degenerate representations, as the assignment applies to the <u>components</u> and not the whole representation, for example see E' of D_{3h} below.

For example:

D_{3h}	Е	$2C_3$	$3C_2$	$\sigma_{_h}$	$2S_3$	$3\sigma_v$	
A_1 '	1	1	1	1	1	1	
A_2'	1	1	-1	1	1	-1	
E'	2	-1	0	2	-1	0	(T_x, T_y)
A_1 "	1	1	1	-1	-1	-1	
A ₂ "	1	1	-1	-1	-1	1	T _z
E"	2	-1	0	2	1	0	

E' has components (say p_x and p_y) that are symmetric under σ_h :

- The 1 and 2 as Subscripts
 - \circ For non-degenerate representations (A and B) a subscript of 1 indicates the representation is symmetric with respect to a C_2 axis perpendicular to the principle C_n axis, or in the absence of this element, to a σ_v plane. A subscript of 2 indictes the representation is antisymmetric.
 - o For multidimensional representations, the subscripts 1, 2 ... are added to distinguish between non-equivalent irreducible representations that are not separated under the above rules.

For example:

		-					
D_{3h}	Е	$2C_3$	$3C_2$	$\sigma_{\scriptscriptstyle h}$	$2S_3$	$3\sigma_v$	
A ₁ '	1	1	1	1	1	1	
A_2 '	1	1	-1	1	1	-1	
E'	2	-1	0	2	-1	0	(T_x, T_y)
A ₁ "	1	1	1	-1	-1	-1	
A ₂ "	1	1	-1	-1	-1	1	T_z
E"	2	-1	0	2	1	0	

- Complex Characters ε
 - o For a number of groups complex characters arise where $\varepsilon = \exp(i2\pi/n)$ where ε can be regarded as an operator that rotates a vector by $2\pi/n$ anticlockwise in the complex plane or an Argand diagram. The two IR with complex characters are normally bracketed. Such point groups are not often encountered with molecules.

For example:

C_3	E	C_3^1	C_3^2	
A	1	1	1	
_ [1	ε	ε*]
E	1	ε*	ε	

• Linear Groups

o Linear groups have an infinity subscript, eg $C_{\infty V}$ and $D_{\infty h}$. The symbol C_{∞}^{ϕ} indicates a rotation by an angle (ϕ) of any value, including infinitesimal. An infinite number of rotations is therefore possible, and an infinite number of vertical mirror planes $\infty \sigma_{V}$. In these groups Greek symbols are often used rather than the Mulliken notation. In addition, the primes are not used, and are replaced with + or - signs superscript to the Greek symbol, they still however refer to the sign under σ_{V} . The degenerate components do not follow the rules given for the other point groups.

For example:

$C_{\infty_{\mathbf{V}}}$	Е	$2C_{\infty}^{\phi}$.	 $\infty \sigma_{v}$
$A_1 = \Sigma^+$	1	1	 1
$A_2 = \Sigma^-$	1	1	 -1
$E_1=\Pi$	2	2cos¢	 0
$E_2=\Delta$	2	2cos2φ	 0
E ₃ =Ф	2	2cos3φ	 0