Homework

• confirm for yourself for homework that $\Gamma_{3N}(H_2O) = 3A_1 + 1A_2 + 2B_1 + 3B_2$

C_{2y}	E	C_{2}	$\sigma(xz)$	$ \begin{array}{c} \sigma'(yz) \\ 3 \\ \hline 1 \\ -1 \end{array} $	C_{2v}	E	C_2	$\sigma(xz)$	$\sigma'(yz)$
$\Gamma(H_20)$	9	-1	1	3	$\Gamma(H_20)$	9	-1	1	3
$\overline{A_1}$	1	1	1	1	B_1	1	-1	1	-1
A_2	1	1	-1	-1	B_2	1	-1	-1	1
4					$n_{B_1} = \frac{1}{4} \Big[(1 \bullet 9 \bullet 1) + (1 \bullet -1 \bullet -1) + (1 \bullet 1 \bullet 1) + (1 \bullet 3 \bullet -1) \Big]$				
$n_{A_1} = \frac{1}{4} [9 - 1 + 1 + 3] = \frac{12}{4} = 3$					$n_{B_1} = \frac{1}{4} [9 + 1 + 1 - 3] = \frac{8}{4} = 2$				
$n_{A_2} = \frac{1}{4} [$	(1 • −1 • 1) +	(1•1•-1)+	(1•3•-1)]	$n_{B_2} = \frac{1}{4} [(1 \bullet 9 \bullet 1) + (1 \bullet -1 \bullet -1) + (1 \bullet 1 \bullet -1) + (1 \bullet 3 \bullet 1)]$					
$n_{A_2} = \frac{1}{4} [9]$	$\left] = \frac{4}{4} = 1$			$n_{B_2} = \frac{1}{4} [9 + 1 - 1 + 3] = \frac{12}{4} = 3$					

Problem

- determine the symmetry and activity of the vibrational modes of a tetrahedral molecule such as CH₄ or CCl₄
- first find all the symmetry elements of T_d (this was a tutorial problem from the MOs course)
 I've reproduced some of the material here
- The character table for the T_d point group (Figure 1) is shown to the left, and it tells us the key symmetry operations in this group are E, 8C₃ 3C₂, 6S₄ and 6σ_d
- there are three useful ways of thinking about a tetrahedral molecule, each one emphasises a different aspect of symmetry, Figure 2
 - \circ (a) the C_2 axes
 - o (b) the C₃ axes
 - o (c) the cubic structure

T_d	Е	$8C_3$	$3C_2$	$6S_4$	$6\sigma_d$	h=24
A_1	1	1	1	1	1	
A_2	1	1 -1 0 0	1	-1	-1	
E	2	-1	2	0	0	
T_1	3	0	-1	1	-1	
T_2	3	0	-1	-1	1	$(T_x T_y T_z)$

Figure 1 T_d character table

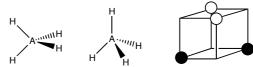


Figure 2 Tetrahedral molecules

- the "cube" may be less familiar to you, think of the H atoms occupying opposite corners of a cube and the central atom A is at the centre
- there are 8C₃ operations
 - o a C₃ axis lies along each bond, one C₃ axis is shown in **Figure 3**, the others are easily predicted because the four H atoms are symmetry equivalent, if one has a C₃ axis passing through it then they all will, hence there are four C₃ axis symmetry <u>elements</u>
 - o around each axis there are 3 possible C_3 operations: $C_3^1 C_3^2 C_3^3$, the last operation $C_3^3 = E$ is equivalent to the identity and so is already counted, there are then two symmetry operations associated with each C_3 axis and thus there are eight distinct C_3 operations in $T_d: 8C_3$

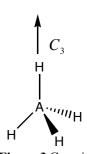


Figure 3 C₃ axis

• there are 3C₂ operations

- o a C_2 axis lies between each pair of A-H bonds, **Figure 4a**, bisecting each pair of atoms and through the center of each pair of faces in the cube, **Figure 4b**, as there are 3 pairs of faces to each cube, there will be $3C_2$ axes
- \circ as we associate only one operation with each C_2 axis there are $3C_2$ operations in T_d

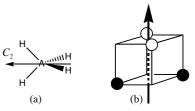


Figure 4 C₂ axis

• there are $6\sigma_d$ operations

- o a σ mirror plane passes through each pair of atoms and contains a C_2 axis, ie two mirror planes cross each pair of faces, **Figure 5**, these are dihedral mirror planes σ_d .
- \circ as there are 3 pairs of faces each with two mirror planes there are $6\sigma_d$ operations in T_d looking from the side looking from above



Figure 5 σ_d mirror planes

• there are 6S₄ operations

- o each C_2 axis has a coincident S_4 axis, consider a rotation of 90° around this axis and then reflection in a plane perpendicular to the axis through the center of the molecule. An example of these elements for the S_4^1 operation is given in **Figure 6**.
- o notice that neither the C_4 nor the σ_h exist within the T_d point group as separate elements!!

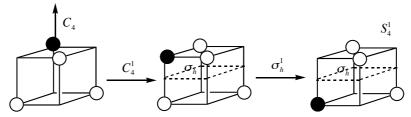


Figure 6 S_4^1 operation

o S_4^2 (**Figure 7**) is the same as C_2^1 operation and C_2 lies to the left of S_4 and so this operation is not counted with the S_4 operations. In addition the S_4^4 operation is the same as E and so is not counted here either

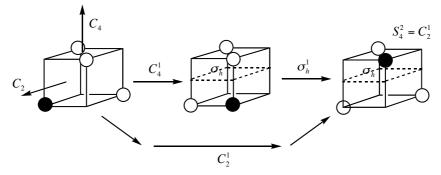
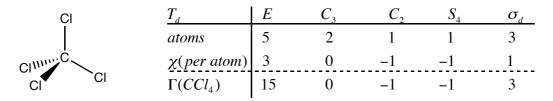


Figure 7 S_4^2 operation

- o thus there are $2S_4$ operations per C_2 axis, and as there are $3C_2$ axes there must be $6S_4$ operations in T_d
- Thus we have shown that there are E, ${}^{8}C_{3}$ ${}^{3}C_{2}$, ${}^{6}S_{4}$ and ${}^{6}\sigma_{d}$ operations for the Td point group.
- determine the reducible representation, start with the number of atoms lying on symmetry elements, then use the table at the back of your character tables:



• determine the irreducible representation of the translation and rotation for the whole molecule

$$\Gamma(T) = T_1$$

$$\Gamma(R) = T_2$$

$$\Gamma(T + R) = T_1 + T_2$$

• subtract the translation and rotation from the reduced representation of 3N to obtain the symmetry of the vibrational modes

$$\Gamma_{vib}(CH_4) = \Gamma(CH_4) - \Gamma(T+R)$$

$$= (A_1 + E + T_1 + 3T_2) - (T_1 + T_2)$$

$$= A_1 + E + 2T_2$$

• determine the IR and Raman activity of these modes

o IR have the same symmetry as the translational motions

$$\Gamma(T) = T_2$$

o Raman have the same symmetry as the binary functions

$$\Gamma(f) = A_1 + E + T_2$$

symmetry and activity of the vibrational modes of CCl₄ are

$$\Gamma_{vib}(CH_4) = A_1(pol) + E(depol) + 2T_2(IR, depol)$$

• the vibrational modes are:

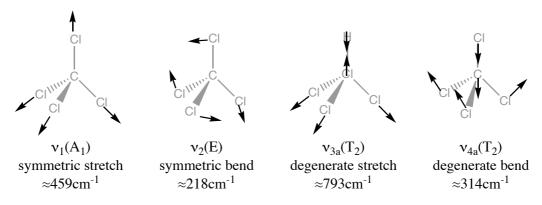


Figure 8 vibrational modes of methane

- \circ 3N-6=3*5-6=9 and thus there are 9 modes 1(A₁)+2(E)+6(T₂)
- o which produce 4 peaks in the Raman spectrum and 2 peaks in the IR spectrum
- o however a number of the IR peaks are outside the range of normal IR spectrometers (400-4000 cm⁻¹).

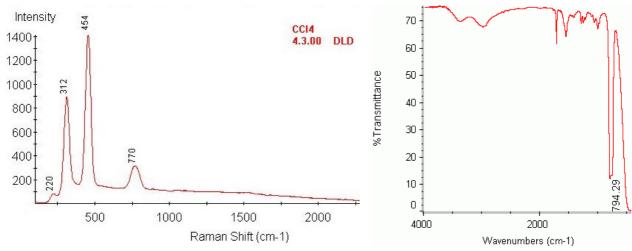


Figure 9 Raman and IR spectra of CCl4 from web-page: http://ed.augie.edu/~viste/Raman/RamanQuantum.html