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Calculation on the NH3 molecule 
• use the department computers and carry out an optimisation and then 

frequency analysis of the NH3 molecule.  Animate the vibrations. 
o animation of the normal modes can be found on my web-site at 
o http://www.huntresearchgroup.org.uk/teaching.html 

Bench-top analysis of cis-N2F2 
• determine the symmetry and activity of the vibrational modes of cis N2F2 

and then derive the stretching vibrations using the projector method.  

 

o determine the reducible representation: 

 

o reduce using the reduction formula: 

 

o confirm the number of vibrations =3N=3•4=12 and 4+2+2+4=12 
o remove the translational and rotational motion of the center of mass 

C2v E C2 σ v ′σ v

A1 1 1 1 1
A2 1 1 −1 −1
B1 1 −1 1 −1
B2 1 −1 −1 1

N N

F F

C2

σ'v(yz)

σv(xz)

C2v E C2 σ v ′σ v

unshifted atoms 4 0 0 4
χ(per atom) 3 −1 1 1
Γ3N (N2F2 ) 12 0 0 4

C2v E C2 σ v ′σ v

Γ3N (N2F2 ) 12 0 0 4

A1 1 1 1 1 ⇒
1
4
(1•12 •1) + 0 + (1• 4 •1)[ ] = 16

4
= 4

A2 1 1 −1 −1 ⇒
1
4
(2 •15 •1) + 0 + (1• 4 • −1)[ ] = 8

4
= 2

B1 1 −1 1 −1 ⇒
1
4
(1•12 •1) + 0 + (1• 4 • −1)[ ] = 8

4
= 2

B2 1 −1 −1 1 ⇒
1
4
(2 •15 •1) + 0 + (1• 4 •1)[ ] = 16

4
= 4

Γ3N (N2F2 ) = 4A1 + 2A2 + 2B1 + 4B4
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Γ(T ) = A1 + B1 + B2
Γ(R) = A2 + B1 + B2

Γ(T + R) = A1 + A2 + 2B1 + 2B2

Γvib (N2F2 ) = Γ3N − Γ(T + R)
= 4A1 + 2A2 + 2B1 + 4B2( ) − A1 + A2 + 2B1 + 2B2( )
= 3A1 + A2 + 2B2

 

o determine the infrared and Raman activity 

IR active Γ(T ) = A1 + B1 + B2
Raman active Γ( f ) = A1 + A2 + B1 + B2
Γvib (N2F2 ) = 3A1(IR, pol) + A2 (depol) + 2B2 (IR,depol)

 

• Consider the stretches first 
o the N=N stretch, the vector under C2 may appear to reverse onto itself, in 

the case of stretching vectors reversals of this kind are NOT 
counted as -1. 

 

o for the N-F stretches, take a vector for each motion, determine the 
reducible representation, and reduce it to the irreducible representation 
components 

 

o thus we determine Γ stretches = 2A1 + B2  
o use the projection operator, then draw out the vibrational modes adding 

vectors to eliminate the CoM motion 

 

o two equivalent representations of the final motions: 

N=N stretch
will be A1

C2v E C2 σ v ′σ v

Γ(sN =N ) 1 1 1 1N N

F F

C2v E C2 σ v ′σ v

Γ(sN −F ) 2 0 0 2

A1 1 1 1 1 ⇒ 1
4
(1• 2 •1) + 0 + (1• 2 •1)[ ] = 4

4
= 1

Γ(sN −F ) − A1 1 −1 −1 1 ⇒ B2
Γ(sN −F ) = A1 + B2

s1s2

N N

F F

C2v E C2 σ v ′σ v

Q s1[ ] s1 s2 s2 s1
A1 1 1 1 1
B2 1 −1 −1 1

ψ A1 =
1
4
s1 + s2 + s2 + s1[ ] = 1

2
s1 + s2[ ]

ψ B2 =
1
2
s1 − s2[ ]
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• Consider the in-plane motions 

 
o it is clear the in-plane modes have the same reducible representation as the 

stretches, and hence will span the same IR Γ in− plane = A1 + B2   
o two equivalent representations of the final motions: 

 

• calculate the out-of-plane motions 
o as the first step determine the remaining IRs 

Γvib (N2F2 ) = 3A1(IR, pol) + A2 (depol) + 2B2 (IR,depol)
ΓN =N stretch = A1
ΓN −F stretch = A1 + B2
Γ in− plane = A1 + B2

Γout−of − plane = Γvib (N2F2 ) − ΓN =N stretch − ΓN −F stretch − Γ in− plane

= A2

 

o out-of-plane vector reversals ARE counted as -1. 

N-F
symmetric stretch
A1

N-F
asymmetric stretch
B2

N N

F F

N N

F F

N N

F F

N N

F F

N N

F Fa1a2

C2v E C2 σ v ′σ v

Γ(aN −N −F ) 2 0 0 2
same as stretches
Γ(aN −N −F ) = A1 + B2

C2v E C2 σ v ′σ v

Q a1[ ] a1 a2 a2 a1
A1 1 1 1 1
B2 1 −1 −1 1

ψ A1 =
1
2
a1 + a2[ ]

ψ B2 = 1
2
a1 − a2[ ]

N N

F F

N=N-F
symmetric bend
A1

N N

F F
N=N-F
asymmetric bend
B2

N N

F F

N N

F F
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o lighter grey arrows introduced to stop CoM motion of whole molecule. 

Complete the Assignment 
• thus we have found the form of all the vibrational modes of cis-N2F2  

Γvib (N2F2 ) = 3A1(IR, pol) + A2 (depol) + 2B2 (IR,depol)
ΓN =N stretch = A1
ΓN −F stretch = A1 + B2
Γ in− plane = A1 + B2
Γout−of − plane = A2

 

• we can add further detail to our interpretation of an experimental spectrum 
or prediction of a spectrum yet to be obtained 

• generally when assigning a spectrum: 
o stretches in general occur at higher wavenumbers than bends 
o the stronger the bond the higher the wavenumber 
o asymmetric modes generally occur at higher energies than symmetric 

modes (but not always!) 
• all of the information obtained can be summarised in a table 
 

Infrared 
(gas; cm-1) 

Raman 
(gas; cm-1) 

Symmetry 
 

Normal mode 

IR (pol) A1 N=N stretch 
IR (depol) B1 N-F asym stretch 
IR (pol) A1 N-F sym stretch 
IR (pol) A1 in-plane sym  bend 
IR (depol) B2 in-plane asym bend 
 (depol) A2 out-of-plane asym bend 

 

C2v E C2 σ v ′σ v

Γ(bN −N −F ) 2 0 0 −2

A2 1 1 −1 −1 ⇒
1
4
(1• 2 •1) + 0 + (1• −2 • −1)[ ] = 4

4
= 1

Γ(bN −N −F ) − A2 1 −1 1 −1 ⇒ B1
Γ(bN −N −F ) = A2 + B1

N N
F

b1b2
F

F-N=N-F
asymmetric bend A2

eliminate B1 mode

N N
F F

ψ A2 =
1
4
b1 − b2 − b2 + b1[ ] = 1

2
b1 − b2[ ]

C2v E C2 σ v ′σ v

Q b1[ ] b1 −b2 b2 −b1

A2 1 1 −1 −1
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Pd(NH3)2Cl2 Spectrum 
• The example from lecture one stated that we could determine which isomer 

(cis or trans) of Pd(NH3)2Cl2 was present from the IR spectrum.  The trans 
isomer has D2h symmetry and exhibits a single Pd-Cl stretching vibration 
ν(Pd-Cl) around 350 cm-1 while the cis isomer, which has C2v symmetry, 
exhibits two stretching modes, Table 1 and Figure 1.   

 M-X vibrations 
 IR Raman 

trans-isomer D2h b3u ag 
cis-isomer C2v a1, b2 a1, b2 

Table 1 Active M-X stretching modes for ML2X2 complexes 

 
Figure 1  IR spectra of cis and trans [Pd(NH3)2Cl2)] Spectrumi 

• Prove this by determining the contribution to the spectrum for the Pd-Cl 
stretching modes for both the cis and trans complexes. 

• First identify the point group of the molecule and identify all of the 
symmetry elements 

 
• depict the Pd-Cl stretching vibrations to be examined and determine the 

reducible contribution 

 

 

Pt NH3H3N
Cl

Cl

C2(x)

C2(y)

C2(z)

σ(xy)

σ(yz)

σ(xz)
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• reduce the reducible contribution, as this is a stretch we start by checking 
and eliminating the totally symmetric vibration 

 

o in this case we have Ag and B3u symmetry as the possible modes 
o thus Γvib (Pd − Cl) = Ag + B3u  

• identify the infrared and Raman active modes 
o IR active modes have the same symmetry as the translational vectors, thus 

Γ(IR)⇒ B1u ,B2u ,B3u{ }  and the Raman modes have the same symmetry as 
the binary functions, thus Γ(Raman)⇒ Ag ,B1g ,B2g ,B3g{ }  

o in addition this molecule has a center of symmetry, and therefore by the 
rule of mutual exclusion we expect that no modes will be present in both 
the Raman and IR spectra 

• assign Γvib(Pd-Cl) 
o  henceΓvib (Pd − Cl) = Ag (pol) + B3u (IR)  
o thus we expect 1 infrared active mode, and 1 active Raman mode which 

will be polarized 
• determine the contribution on Pd-Cl stretching modes to the cis complex  

 

o thus Γvib (Pd − Cl) = A1 + B2  
o IR active modes have the same symmetry as the translational vectors, thus 

Γ(IR)⇒ A1,B1,B2{ }  and the Raman modes have the same symmetry as 
the binary functions, thus Γ(Raman)⇒ A1,A2 ,B1,B2{ }  

o hence Γvib (Pd − Cl) = A1(IR, pol) + B2 (IR,depol)  
o we expect 2 infrared active modes, and 2 active Raman modes one of 

which will be polarized, both modes will be present in both the Raman 
and IR spectra. 

• Thus for the higher symmetry trans-complex a single mode due to the Pd-Cl 
stretching vibration is expected in the IR spectrum, and for the lower 
symmetry cis-complex two modes are expected in the IR spectrum. 

 
                                                
i from Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th 
Edition (1997), John Wiley & Sons, New York, PartB, p10, Fig III-5. 

D2h E C2 (z) C2 (y) C2 (x) i σ (xy) σ (xz) σ (yz)
Γ(Pd − Cl) 2 0 0 2 0 2 2 0
−Ag 1 1 1 1 1 1 1 1
Γ(Pd − Cl) − Ag 1 −1 −1 1 −1 1 1 −1 ⇒ B3u

Pt

Cl Cl

H3N NH3

C2(z)

σ(yz)

σ(xz)
C2v E C2 σ (xz) ′σ (yz)
Γ(Pd − Cl) 2 0 0 2
A1 1 1 1 1
Γ(Pd − Cl) − A1 1 −1 −1 1 ⇒ B2


