Calculation on the NH₃ molecule

- use the department computers and carry out an optimisation and then frequency analysis of the NH₃ molecule. Animate the vibrations.
 - o animation of the normal modes can be found on my web-site at
 - o http://www.huntresearchgroup.org.uk/teaching.html

Bench-top analysis of cis-N₂F₂

• determine the symmetry and activity of the vibrational modes of cis N_2F_2 and then derive the stretching vibrations using the projector method.

C_{2v}	E	C_{2}	$\sigma_{_{v}}$	σ'_{v}
A_1	1	1	1	1
A_2	1	1	-1	-1
B_1	1	-1	1	-1
B_2	1	-1	$ \begin{array}{c c} \sigma_{\nu} \\ \hline 1 \\ -1 \\ 1 \\ -1 \end{array} $	1

o determine the reducible representation:

C_{2v}	E	C_2	$\sigma_{_{\scriptscriptstyle u}}$	σ'_{v}
unshifted atoms	4	0	0	4
$\chi(per\ atom)$	3	-1	1	1
$\Gamma_{3N}(N_2F_2)$	12	0	0	4

o reduce using the reduction formula:

C_{2v}	E	C_2	$\sigma_{_{v}}$	$\sigma_{_{v}}^{\prime}$	
$\Gamma_{3N}(N_2F_2)$	12		0	4	
$A_{\rm l}$	1	1	1	1 ⇒	$\frac{1}{4} [(1 \bullet 12 \bullet 1) + 0 + (1 \bullet 4 \bullet 1)] = \frac{16}{4} = 4$
A_2	1	1	-1	-1 ⇒	$\frac{1}{4} [(2 \bullet 15 \bullet 1) + 0 + (1 \bullet 4 \bullet -1)] = \frac{8}{4} = 2$
B_1	1	-1	1	-1 ⇒	$\frac{1}{4} [(1 \bullet 12 \bullet 1) + 0 + (1 \bullet 4 \bullet -1)] = \frac{8}{4} = 2$
B_2	1	-1	-1	$1 \Rightarrow \frac{1}{2}$	$\frac{1}{4} [(2 \bullet 15 \bullet 1) + 0 + (1 \bullet 4 \bullet 1)] = \frac{16}{4} = 4$
$\Gamma_{3N}(N_2F_2)$	$=4A_{1}$	$+2A_2$	$+2B_{1}+$	$4B_{\scriptscriptstyle A}$	

- \circ confirm the number of vibrations =3N=3•4=12 and 4+2+2+4=12
- o remove the translational and rotational motion of the center of mass

1

$$\Gamma(T) = A_1 + B_1 + B_2$$

$$\Gamma(R) = A_2 + B_1 + B_2$$

$$\Gamma(T + R) = A_1 + A_2 + 2B_1 + 2B_2$$

$$\begin{split} \Gamma_{vib}(N_2 F_2) &= \Gamma_{3N} - \Gamma(T+R) \\ &= \left(4A_1 + 2A_2 + 2B_1 + 4B_2\right) - \left(A_1 + A_2 + 2B_1 + 2B_2\right) \\ &= 3A_1 + A_2 + 2B_2 \end{split}$$

o determine the infrared and Raman activity

IR active
$$\Gamma(T) = A_1 + B_1 + B_2$$

Raman active $\Gamma(f) = A_1 + A_2 + B_1 + B_2$
 $\Gamma_{vib}(N_2F_2) = 3A_1(IR, pol) + A_2(depol) + 2B_2(IR, depol)$

- Consider the stretches first
 - the N=N stretch, the vector under C₂ may appear to reverse onto itself, in the case of stretching vectors reversals of this kind are NOT counted as -1.

N=N stretch will be A₁

$$\begin{array}{c|cccc} C_{2v} & E & C_2 & \sigma_v & \sigma'_v \\ \hline \Gamma(s_{N=N}) & 1 & 1 & 1 & 1 \end{array}$$

 for the N-F stretches, take a vector for each motion, determine the reducible representation, and reduce it to the irreducible representation components

- o thus we determine $\Gamma_{stretches} = 2A_1 + B_2$
- use the projection operator, then draw out the vibrational modes adding vectors to eliminate the CoM motion

o two equivalent representations of the final motions:

• Consider the in-plane motions

$$\begin{array}{c|cccc} C_{2v} & E & C_2 & \sigma_v & \sigma'_v \\ \hline \Gamma(a_{N-N-F}) & 2 & 0 & 0 & 2 \\ \hline same \ as \ stretches & & & \end{array}$$

$$\Gamma(a_{N-N-F}) = A_1 + B_2$$

- o it is clear the in-plane modes have the same reducible representation as the stretches, and hence will span the same IR $\Gamma_{in-plane} = A_1 + B_2$
- o two equivalent representations of the final motions:

- calculate the out-of-plane motions
 - o as the first step determine the remaining IRs

$$\begin{split} &\Gamma_{vib}(N_2F_2) = 3A_1(IR,pol) + A_2(depol) + 2B_2(IR,depol) \\ &\Gamma_{N=N \text{ stretch}} = A_1 \\ &\Gamma_{N-F \text{ stretch}} = A_1 + B_2 \\ &\Gamma_{in-plane} = A_1 + B_2 \\ &\Gamma_{out-of-plane} = \Gamma_{vib}(N_2F_2) - \Gamma_{N=N \text{ stretch}} - \Gamma_{N-F \text{ stretch}} - \Gamma_{in-plane} \\ &= A_2 \end{split}$$

o out-of-plane vector reversals ARE counted as -1.

o lighter grey arrows introduced to stop CoM motion of whole molecule.

Complete the Assignment

• thus we have found the form of all the vibrational modes of cis-N₂F₂

$$\begin{split} &\Gamma_{vib}(N_2F_2) = 3A_1(IR,pol) + A_2(depol) + 2B_2(IR,depol) \\ &\Gamma_{N=N \ stretch} = A_1 \\ &\Gamma_{N-F \ stretch} = A_1 + B_2 \\ &\Gamma_{in-plane} = A_1 + B_2 \\ &\Gamma_{out-of-plane} = A_2 \end{split}$$

- we can add further detail to our interpretation of an experimental spectrum or prediction of a spectrum yet to be obtained
- generally when assigning a spectrum:
 - o stretches in general occur at higher wavenumbers than bends
 - o the stronger the bond the higher the wavenumber
 - asymmetric modes generally occur at higher energies than symmetric modes (but not always!)
- all of the information obtained can be summarised in a table

Infrared	Raman	Symmetry	Normal mode
(gas; cm ⁻¹)	(gas; cm ⁻¹)		
IR	(pol)	A_1	N=N stretch
IR	(depol)	B_1	N-F asym stretch
IR	(pol)	\mathbf{A}_1	N-F sym stretch
IR	(pol)	\mathbf{A}_1	in-plane sym bend
IR	(depol)	B_2	in-plane asym bend
	(depol)	A_2	out-of-plane asym bend

Pd(NH3)2Cl2 Spectrum

The example from lecture one stated that we could determine which isomer (cis or trans) of Pd(NH₃)₂Cl₂ was present from the IR spectrum. The trans isomer has D_{2h} symmetry and exhibits a single Pd-Cl stretching vibration v(Pd-Cl) around 350 cm⁻¹ while the cis isomer, which has C_{2v} symmetry, exhibits two stretching modes, **Table 1** and **Figure 1**.

	M-X vibrations			
	IR	Raman		
trans-isomer D _{2h}	b _{3u}	a_{g}		
cis-isomer C _{2v}	a_1, b_2	a_1, b_2		

Table 1 Active M-X stretching modes for ML₂X₂ complexes

Figure 1 IR spectra of cis and trans [Pd(NH3)2Cl2)] Spectrumⁱ

- Prove this by determining the contribution to the spectrum for the Pd-Cl stretching modes for both the cis and trans complexes.
- First identify the point group of the molecule and identify all of the symmetry elements

• depict the Pd-Cl stretching vibrations to be examined and determine the reducible contribution

• reduce the reducible contribution, as this is a stretch we start by checking and eliminating the totally symmetric vibration

D_{2h}	$\mid E \mid$	$C_2(z)$	$C_2(y)$	$C_2(x)$	i	$\sigma(xy)$	$\sigma(xz)$	$\sigma(yz)$	
$\Gamma(Pd-Cl)$	2	0	0	2	0	2	2	0	
$-A_{g}$	1	1	1	1	1	1	1	1	
$\Gamma(Pd-Cl)-A_g$									B_{3u}

- \circ in this case we have A_g and B_{3u} symmetry as the possible modes
- o thus $\Gamma_{vib}(Pd-Cl) = A_o + B_{3u}$
- identify the infrared and Raman active modes
 - \circ IR active modes have the same symmetry as the translational vectors, thus $\Gamma(IR) \Rightarrow \left\{B_{1u}, B_{2u}, B_{3u}\right\}$ and the Raman modes have the same symmetry as the binary functions, thus $\Gamma(Raman) \Rightarrow \left\{A_g, B_{1g}, B_{2g}, B_{3g}\right\}$
 - in addition this molecule has a center of symmetry, and therefore by the rule of mutual exclusion we expect that no modes will be present in both the Raman and IR spectra
- assign $\Gamma_{vib}(Pd-Cl)$
 - $\circ \quad \text{hence } \Gamma_{vib}(Pd Cl) = A_g(pol) + B_{3u}(IR)$
 - thus we expect 1 infrared active mode, and 1 active Raman mode which will be polarized
- determine the contribution on Pd-Cl stretching modes to the cis complex

- o thus $\Gamma_{vib}(Pd Cl) = A_1 + B_2$
- IR active modes have the same symmetry as the translational vectors, thus $\Gamma(IR) \Rightarrow \left\{A_1, B_1, B_2\right\}$ and the Raman modes have the same symmetry as the binary functions, thus $\Gamma(Raman) \Rightarrow \left\{A_1, A_2, B_1, B_2\right\}$
- o hence $\Gamma_{vib}(Pd Cl) = A_1(IR, pol) + B_2(IR, depol)$
- we expect 2 infrared active modes, and 2 active Raman modes one of which will be polarized, both modes will be present in both the Raman and IR spectra.
- Thus for the higher symmetry trans-complex a single mode due to the Pd-Cl stretching vibration is expected in the IR spectrum, and for the lower symmetry cis-complex two modes are expected in the IR spectrum.

ⁱ from Nakamoto *Infrared and Raman Spectra of Inorganic and Coordination Compounds*, 5th Edition (1997), John Wiley & Sons, New York, PartB, p10, Fig III-5.