The Direct Product

• form the product $A_2 \otimes B_1$ for the C_{2v} point group explicitly by multiplying the characters, and check your answer by using the "rules" in your hand-out.

o $A_2 \otimes B_1 = B_2$ since $A \otimes B = B$ and $1 \otimes 2 = 2$

Using Symmetry to Determine Infrared Activity

- determine if excitation of the B₂ vibration of H₂O is allowed for IR spectra:
 - For $\Gamma^f = A_1$ we require the cross product below to contain the A_1 IR:

$$\left\{\Gamma^{\left\langle\chi_{f}\right|}\otimes\Gamma^{\left|\chi_{i}\right\rangle}\right\}\otimes\Gamma^{\lambda}=\left\{B_{2}\otimes A_{1}\right\}\otimes\left[\begin{array}{c}B_{1}\\B_{2}\\A_{1}\end{array}\right]=B_{2}\otimes\left[\begin{array}{c}B_{1}\\B_{2}\\A_{1}\end{array}\right]=\left\{A_{2},A_{1},B_{1}\right\}$$

o A_1 is present and so the B_2 vibration is allowed => we will see a B_2 peak in the infrared spectrum of water

Using Symmetry to Determine Raman Activity

• determine if excitation of the B₂ vibration is allowed for RAMAN spectra:

$$\left\{\Gamma^{\left\langle \chi_{f}\right|}\otimes\Gamma^{\left|\chi_{i}\right\rangle}\right\}\otimes\Gamma^{\alpha}=\left\{B_{2}\otimes A_{1}\right\}\otimes\left[\begin{array}{c}A_{1}\\B_{1}\\A_{2}\\B_{2}\end{array}\right]=B_{2}\otimes\left[\begin{array}{c}A_{1}\\B_{1}\\A_{2}\\B_{2}\end{array}\right]=\left\{B_{2},A_{2},B_{1},A_{1}\right\}$$

 \circ A₁ is present and so the B₂ vibration is allowed => we will see a B₂ peak in the infrared spectrum of water

1