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Vibrational Selection Rules 
Introduction 
• in the last few lectures we have used a number of "rules" to determine if a 

mode was infrared or Raman active 
o the dipole moment must change for a vibration to be infrared active, and 

to determine this we used the symmetry of the translational vectors 
o the polarization must change for a vibration to be Raman active, and to 

determine this we examined the symmetry of the binary functions 
• there is a second selection rule for vibrational spectroscopy that the quantum 

number n can only vary by Dn±1 
• in this section the origin of the rules for infrared and Raman activity will be 

explained, as will the Dn±1 selection rule 
• the Einstein coefficients tell us the probability for a transition  

  Equation 1 

• this contains the transition dipole moment µfi and thus the transition dipole 
moment must be non-zero for a transition to occur (or for a peak to be present 
in an experimental spectrum) 

   Equation 2 

The Transition Dipole Moment 
• the dipole moment can be a permanent dipole moment µ=µ0 or an induced 

dipole moment dependent on the polarizability µ=ae. 
• the total molecular wavefunction is composed of electronic, vibrational, 

rotational and translational components 

   Equation 3 

o we assume separability of the wavefunction and the associated 
Schrödinger equations, (including the BO approximation) allow us to 
"ignore" parts of the equation. 

o we will now only be working with the yelyvib part of these equations 
• from now on I will use: 
o y for electronic and c for nuclear wavefunctions 
o subscript f=final state and subscript i=initial state 

• applying the BO approximation and assuming that the dipole moment can be 
written in terms of separate electronic and nuclear components we have: 

 

Equation 4 
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• we now need to distinguish between transitions on the same electronic state 
and those between different electronic states 

• a transition between vibrational states on the same electronic state is 
experimentally “measured” by IR and Raman spectroscopy 
o the first component is zero because the integrand is an odd function 

  Equation 5 

o and we need to evaluate the second component 

  Equation 6 

• a transition between different electronic states is experimentally 
“measured” by UV-vis spectroscopy, however the effects of vibrational 
transitions can sometimes be seen as fine-structure 
o in this case the second component is zero because the electronic states are 

orthogonal 

  Equation 7

 
o and we will need to evaluate the first component, this is something we will 

consider in due course 

  Equation 8 

• now we will consider vibrational transitions on the same electronic state, 
Equation 8.   

   Equation 9 

o to progress we need to understand what is “under the hood” of this integral 
and we need to know how to determine if the integral is zero or not. 

o an advantage of spectroscopy is that we don’t need to evaluate the 
integral!  We just need to know if it is zero (no peak in the spectrum) or 
not zero (a peak will be evident in the spectrum) 

o at the moment we say nothing about how intense the peak will be! 
  

χ f∫ µe χ idτ n = χ f∫ ψ i∫ µe( )ψ idτ n⎡
⎣

⎤
⎦ χ idτ e = 0
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ψ i∫ µn ψ idτ e
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⎣

⎤
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⎣
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The Nuclear Vibrational Wavefunction 
• first we need to know the form of the nuclear (or vibrational) wavefunction 
• you have met the harmonic oscillator (HO) potential before  Figure 1 shows a 

picture of the solutions and the functional form of these solutions 

  

 

Figure 1 the HO Hamiltonian and wavefunctions 

• these solutions take the form of a polynomial multiplied by an exponential,  
o the polynomial “looks after” the function going to zero (the oscillations)  
o the exponential “looks after” the decay properties of the functions 

(decaying to zero outside of the potential). 
• Hv(y) are Hermite polynomials, these are a set of functions (polynomials) 

with a special name because they satisfy a set of specific rules. 

 
Figure 2 Hermite polynomials1 

o You have meet other special types of function before, Bessel functions 
and spherical harmonics (angular solutions of electronic Schrödinger 
equation) as well as associated Laguerre functions (radial solution of the 
electronic equation), there is a reminder of the radial electronic solutions 
in the OPTIONAL additional notes on-line. 

o Hermite polynomials satisfy certain rules: 
Recursion relation  
Differential equation  

Orthogonality relation  

Normalisation   

Equation 10 

 
1 http://en.wikipedia.org/wiki/Hermite_polynomials 
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• the harmonic oscillator solutions given above are those for a single vibration,  
or single normal mode Qi 
o the normal modes Qi are just the vibrations we have already seen, ie the 

vector diagrams we generated in Lecture 3 which are also the coordinates 
that diagonalise the Hessian (second derivative matrix).  

o each normal mode has its own associated set of vibrational quantum 
numbers ni. 

o to differentiate between the total vibrational wavefunction (c) and the 
individual HO solutions for each Qi I will refer to the individual solutions 
as jni(Qi) 

• in a molecule there are 3N-6 vibrations and so the total nuclear wavefunction 
is made from a product of individual HO solutions for each normal mode: 

   Equation 11 

The Nuclear Dipole Moment 
• we don't make a coordinate transformation to the normal modes for the dipole 

moment, so continue to think of this as a vector with µx, µy and µz components 
• the nuclear dipole moment varies with the vibrational displacements of the 

nuclei, thus we use a Taylor expansion in terms of the normal modes ( ) 

   Equation 12 

o the first term gives the dipole moment when the displacement of atoms is 
zero, ie the static dipole moment, µ0. 

o the second and larger terms describe the change in the dipole moment as 
the atoms move during a vibration 

The Vibrational Selection Rules 
• inserting µn into the equation for the transition dipole moment µfi generates: 

 

Equation 13 

o in the zero order term µ0 is a constant and can be brought out of the 
integral.  By definition the vibrational states (on the same electronic state) 
are orthogonal and because we are examining an excitation this integral 
must be zero.  Thus this term is eliminated  

  Equation 14 

o the second order and higher terms are assumed to be minimal 

   Equation 15 

o which leaves the first order term as the only significant contributor 

  Equation 16 

 
χn = ϕ i (Qi )

i
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∂Qk

⎛
⎝⎜

⎞
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• the first order term has two components, both of these must be non-zero for 
the transition dipole moment to be non-zero 

   Equation 17 

o the first of these indicates that to be vibrationally active the nuclear dipole 
moment must change or vary when the position of the atoms (nuclei) 
change within the normal mode Qk.  This is the first selection rule 
for molecular vibrations. 

• we can explore the second expression further 
o first we think about the individual integrals 

 

  Equation 18 

o this integral can be evaluated using the harmonic oscillator solutions and 
annihilation and creation operators which are well beyond the 
scope of this course. 

o a simpler justification for this rule can be determined from the recursion 
relationship of Hermite polynomials: : 

 

  Equation 19 

o two components result, the only way one of these components can be non-
zero (due to the orthogonality of the harmonic oscillator solutions) is if 
f=i+1 or f=i-1. 

o thus this integral is only non-zero when the vibrational quantum numbers 
of the initial and final states differ by ±1, and we arrive at the second 
selection rule for vibrational spectroscopy: . 
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f (Q1)∫ ϕν1
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! ϕk
f (Qk )Qk∫ ϕk
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only one integral will not be 1, that for the Qk  component

= ϕk
f (Qk )Qk∫ ϕk

i (Qk )dQk

⇒ ϕk
f (Qk ) Qk ϕk

i (Qk )

2yHi (y)= Hi+1(y)+2Hi−1(y)

 

ϕi ∝ Hi (Q)

ϕ f Qk ϕi ∝ ϕ f Qk Hi (Q)

2QHi (Q) = Hi+1(Q)+ 2Hi−1(Q) recursion relation

ϕ f Qk ϕi ∝ 1
2

ϕ f Hi+1(Q)+ 2Hi−1(Q)

∝ ϕ f Hi+1(Q) + ϕ f Hi−1(Q)

∝ ϕ f ϕi+1

=0 unless f =i+1
!"# $#

+ ϕ f ϕi−1

=0 unless f =i−1
!"# $#

Δν =±1

IMPORTANT
! 

IMPORTANT
! 
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• to determine if a Raman vibration is allowed we follow a similar procedure to 
that covered for the static dipole moment: 
o expand the polarizability with respect to the molecular vibrations or 

normal modes (Qk) in a Taylor series 
o eliminate various terms until only the first order term is left  

   Equation 20 

o the first factor of this term indicates that for a vibration to be Raman 
active the polarizability must change or vary with the vibrating nuclei. 

o the second factor is identical to that obtained for an infrared vibration to 
be active and we arrive at the second selection rule that . 

The Direct Product and Integral Symmetry 
• luckily to progress we don’t need to compute the value of the transition dipole 

moment integral!  We only need to know if the transition dipole is non-zero.  
This is where symmetry is particularly powerful tool. 

   Equation 21 

• we now need two new pieces of information relating to symmetry groups and 
these are: 
o the direct product 
o odd and even functions and their integrals 

• when two irreducible representations are combined as a product, the operation 
is called a direct product and is represented by the symbol  
o to form the direct product the characters of each symmetry operator of the 

representation are multiplied together 
o for example the direct product  for the C3v point group is : 

 
 

Figure 3 Forming a direct product 
• the irreducible representations of a point group are always orthonormal 
o another way of stating this property is to say that the sum of characters for 

a direct product of different IRs is always zero, and that the sum of 
characters for the same direct product IRs (divided by the order of the 
group) is always one (expand out the columns of point group first!) 

o for the example above: 

 
  Equation 22 

• the direct product does not necessarily behave the way we are used to!  For 
example the direct product  for the C3v point group is and 
it contains multiple components. 

µ fi =
∂α
∂Qk

⎛
⎝⎜

⎞
⎠⎟k

∑
0

χ f Qk χ i ε ≠ 0

Δν =±1

χ f λ χ i ≠ 0 λ =α,µ

⊗

A1⊗ A2 A2
C3v E 2C3 3σ v

A1 1 1 1
A2 1 1 −1
E 2 −1 0

C3v E 2C3 3σ v

A1 1 1 1
A2 1 1 −1
A1⊗ A2 1 1 −1 = A2

A1⊗ A2 = A2

 

[(1•1)
E
!+ (2•1)

C3

!+ (3•−1)]
σ v

"#$ %$ = 0

E⊗ E A1 + A2 +E{ }
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o To determine the direct product for degenerate IRs, first form the direct 
product and then reduce it using the reduction formula 

 

 
thus  

Figure 4 Forming a direct product between degenerate IR 
• there are short-cuts to working out a direct product these are listed with your 

character tables. 
o for example  since  and  

In-Class Activity 
• form the product  for the C2v point group explicitly by multiplying 

the characters, then check your answer by using the "rules" in your hand-out. 
 
 
 
 
 
 
 

Determination of Non-Zero Integrals 
• functions that are totally symmetric have a non-zero integral, while 

any functions that are not totally symmetric have zero integrals 
• this is a key fact that we will be using extensively 

  
Figure 5 odd function f and even function g 

• if f is antisymmetric about x=0 then , and f is an "odd" function 
and will have an integral of zero over a symmetric range –a to +a, Figure 5a 

C3v E 2C3 3σ v

E 2 −1 0
E 2 −1 0
E⊗ E 4 1 0

C3v E 2C3 3σ v

A1 1 1 1 ⇒ nA1 =
1
6
1• 4 •1( ) + 2 •1•1( ) + 3• 0 •1( )#$ %& =

6
6
= 1

A2 1 1 −1 ⇒ nA1 =
1
6
1• 4 •1( ) + 2 •1•1( ) + 3• 0 • −1( )#$ %& =

6
6
= 1

E 2 −1 0 ⇒ nA2 =
1
6
1• 4 • 2( ) + 2 •1• −1( ) + 3• 0 • 0( )#$ %& =

6
6
= 1

E⊗ E 4 1 0

E⊗ E = A1 + A2 +E{ }

A1⊗ A2 = A2 A⊗ A = A 1⊗ 2 = 2

A2 ⊗ B1

f (−x)= − f (x)

IMPORTANT
! 
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• if g is symmetric about x=0 then , and g is an "even" function 
and will have a non-zero integral over a symmetric range –a to +a, Figure 5b 

• if we consider the sign of the function over the interval a to –a, then the sign 
of these functions belongs to the Cs point group: 

 
Figure 6 odd and even functions f and g 

o the sign of the odd function f spans the irreducible representation  and 
the sign of the even function g spans the irreducible representation  

• thus functions that are totally symmetric have a non-zero integral, while any 
functions that are not totally symmetric have zero integrals 

• saying the same thing but more formally: 

If an integrand is not a basis for the totally symmetric IR 
of the group, then the integral is necessarily zero. 

 
o there is one caveat, a function that has 

has a non-zero integral by 
symmetry may have a zero integral by 
accident!  

 
 
 
 
• consider first an integrals of the form  in the point group Cs 

      

 
Equation 23 

o the irreducible representation spanned by the square of a function is 
always totally symmetric and will therefore have a non-zero integral by 
symmetry (it can still be accidentally zero!) 

o the irreducible representation spanned by a product of functions belonging 
to different irreducible representations will not be totally symmetric and 
will therefore have a zero integral by symmetry 

• there is an additional level of complexity introduced by functions that span 
degenerate irreducible representations, in this case the reduced representation 
must contain the totally symmetric component. 
o there is a little more detail for this in the OPTIONAL additional notes on-

line. 
  

g(−x)= g(x)

Cs E σ

"A 1 1
""A 1 −1

!!A
!A

f∫
2
dτ

f spans !!A
∴ f 2 = f × f
spans !!A ⊗ !!A = !A

g spans !A
∴g2 = g× g
spans !A ⊗ !A = !A

g spans !A and f spans !!A
∴gf = g× f
spans !A ⊗ !!A = !!A

 
Figure 7 an integral is zero "by accident" 
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• now we are ready to determine when a general integral is zero using 
symmetry. 
o an integral can only be non-zero if it has an intergrand (the central 

functions inside the integral) that contains a totally symmetric component 
o first evaluate the direct product of all the components of the integral 
o if this is a reducible representation, reduce it to the component IR 
o identify if there is a totally symmetric component 

   Equation 24 

• for example we can evaluate the integral  under the C4v point 

group.  The dxy function spans the B2 IR, the dx2-y2 function spans the B1 
IR, and the z function spans the A1 IR.  To be non-zero the direct product of 
these IR must be A1. 

 

  Equation 25 

 

Using Symmetry to Determine Infrared and Raman Activity 
• now we are ready to apply this general principle to our specific example 
• we require that the transition dipole moment or transition polarizability matrix 

be non-zero, ie that   

• for this integral to be non-zero at least one component must span the totally 
symmetric irreducible representation of the point group of the molecule 

• this is determined by forming the direct product of the components: 

 
  Equation 26 

o the ground vibrational state is always 
totally symmetric  

o the symmetry of the final state is the 
symmetry of the excited vibration 

 (when we have a 
single excitation) 

o the symmetry of the l components is 
known, they reflect the symmetry of the translational vectors for µ or the 
binary functions for a 

• for example we deduced the vibrational modes of water to be Gvib=2A1+B2 

o we know the ground vibrational state is totally symmetric =A1 

o we know that the final vibrational state can be =A1 or B2 
o we know that µ spans the IRs x=>B1 y=>B2 and z=>A1 

 

I = fi f j∫ fk dτ

ΓR = Γ( fi )⊗Γ( f j )⊗Γ( fk )

ΓR = n1Γ1
IR + n2Γ2

IR +!

I = dxy z dx2−y2

I = dxy z dx2−y2 →Γ = B2 ⊗ A1⊗ B1{ }
and B2 ⊗ A1 = B2 then B2 ⊗ B1 = A2

thus Γ = A2 I = 0

χ f λ χ i ≠ 0 λ =α,µ

Γ χ f ⊗Γλ ⊗Γ χi where λ = µ or α

Γ χi = A

Γ χ f = Γ(vibration)

Γ χi

Γ χ f

 
Γµ =

Γ(x)
Γ(y)
Γ(z)

"

#

$
$
$

%

&

'
'
'

Γα =

Γ(x2 )
Γ(y2 )
Γ(z2 )
Γ(xz)
Γ(xy)
Γ(yz)

"

#

$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'

IMPORTANT
! 
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o we know that or a components span all the IRs (ie there is a binary 
function associated with all of the IR) 

• thus for =A1 we require the direct product to contain the A1 IR: 

 
Equation 27 

o I have used a “vector” notation to represent the dipole moment IRs 
o I have used a “set” notation to indicate that the final integral will contain 

components {B1, B2, A1} 
o only one of these components needs to be the A1 IR for the integral to be 

non-zero 
o thus we find that the A1 vibration is allowed => we will see an A1 peak in 

the infrared spectrum of water 

In-Class Activity 
• determine if excitation of the B2 vibration of H2O is allowed for IR spectra: 

 
 
 
 
 
 
 
 

• a similar process is followed for Raman activity, thus for =A1 we require 
the direct product below to contain the A1 IR: 

 
Equation 28 

o as above I have used the a “vector” notation to represent the all the IRs 
spanned by the binary functions.  I have also used a “set” notation to 
indicate that the final integral will contain components {A1, A2, B1, B2} 

o it is not necessary to include all the tensor components, we just need to 
know the different IRs so if one IR is repeated we don’t need to repeat it 
in the equations. 

o only one of these components needs to be the A1 IR for the integral to be 
non-zero.  Thus the A1 vibration is allowed => we will see an A1 peak in 
the Raman spectrum of water 

Γ χ f

Γ χ f ⊗Γ χi{ }⊗Γλ = A1⊗ A1{ }⊗
B1
B2
A1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= A1⊗

B1
B2
A1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= B1,B2,A1{ }

Γ χ f

Γ χ f ⊗Γ χi{ }⊗Γα = A1⊗ A1{ }⊗

A1
A1
A1
B1
A2
B2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

= A1⊗

A1
B1
A2
B2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

= A1,B1,A2,B2{ }
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In-Class Activity 
• determine if excitation of the B2 vibration is allowed for Raman spectra: 

 
 
 
 
 
 
 
 

Phrasing of the Selection Rule 
• the selection "rule" that we have previously been presented with was slightly 

different, it was stated that a mode is 
o infrared active if the IR of the vibration is the same as one of the 

translational vectors  
o Raman active if the IR of the vibration is the same as one of the binary 

functions 
• to arrive at this form of the rules we must note: 
o the translational vectors have the same symmetry as the x, y and z 

coordinate axes which form the components of the nuclear dipole moment 
o the binary functions have the same symmetry as the matrix components of 

the polarizability tensor. 
o the totally symmetric mode is similar to the "identity" in matrix mechanics 

and thus  always spans the IR of the final 
state as the initial state is totally symmetric 

o that only “the direct product square” of an IR will generate the totally 
symmetric IR  (plus some other components if the IR is 
degenerate) 

o thus  only contains the A1 IR when  

• thus we can only have an “allowed” transition when the vibration has the 
same IR as the translational vectors (infrared) or binary functions (Raman)! 

Key Points 
• be able to explain the simplifications we have applied to the full transition 

dipole moment equation 
• be able to explain and discuss the general components of the harmonic 

oscillator nuclear wavefunctions 
• be able to show using a Taylor expansion the origin of the rule that “the 

molecular dipole moment must change for infrared activity” and be able to 
show the appropriate relationship for Raman activity 

• be able to explain using equations the origin of the  selection rule for 
vibrational spectroscopy 

• be able to demonstrate the direct product of IRs giving examples, both the 
"long way" by explicit multiplication or IRs and using short-cuts 

• be able to determine if an integral is zero or non-zero by symmetry 

Γ f ⊗Γ i{ } = Γ f ⊗ A1{ } = Γ f

Γm ⊗Γm ∈ A1

Γ f ⊗Γ i{ }⊗Γλ = Γ f ⊗Γλ Γ f = Γλ

Δν =±1

IMPORTANT
! 
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• starting from an expression of the form , be able 
to explain using direct products the origin of the vibrational selection "rules" 
that a mode is infrared active only if the IR of the vibration is the same as one 
of those for the translational vectors or a mode is Raman active only if the IR 
of the vibration is the same as one of those for the binary functions 

• be able to determine when a mode is IR or Raman active using the expression 

 

 

Self-Study / Tutorial / Exam Preparation Problems 
• show that the A1 and A2 IRs of the C3v point group are orthonormal 
• show that the irreducible representations of the point group C3 are 

orthonormal (hint, don't forget that the pre-multiplied character is the complex 
conjugate!) 

 
• form the direct product  for the C2v point group using both a 

character table and the crib sheet 
• determine the irreducible representations spanned by  under the C3v 

point group 
• form a direct product  for the tetrahedral point group 
• use the equation given below to identify and show which irreducible 

representations of the C4v point group relate to modes that are IR active or 
inactive. 

 

λα = χ f λ χ i ≠ 0 λ =α,µ

Γ χ f ⊗Γ χi{ }⊗Γλ where λ = µ or α

C3 E C3
1 C3

2

A1 1 1 1

E
1 ε ε *
1 ε * ε

"
#
$

%
&
'

ε = exp(2πi 3)
A2 ⊗ B2 ⊗ B1

x, y, z( )2

E1⊗T1⊗T2

A1 ∈ Γ χ f ⊗Γ χi ⊗Γµ{ }


