Vibrational Selection Rules

Introduction
e in the last few lectures we have used a number of "rules" to determine if a
mode was infrared or Raman active
o the dipole moment must change for a vibration to be infrared active, and
to determine this we used the symmetry of the translational vectors
o the polarization must change for a vibration to be Raman active, and to
determine this we examined the symmetry of the binary functions
e there is a second selection rule for vibrational spectroscopy that the quantum
number v can only vary by Av+l
e in this section the origin of the rules for infrared and Raman activity will be
explained, as will the Av+1 selection rule

e the Einstein coefficients tell us the probability for a transition

5, =p, =

if i 2
6¢,n Equation 1

e this contains the transition dipole moment p; and thus the transition dipole
moment must be non-zero for a transition to occur (or for a peak to be present
in an experimental spectrum)

Hy= [ dr = (f|uli) % 0
Equation 2
The Transition Dipole Moment
e the dipole moment can be a permanent dipole moment p=p, or an induced
dipole moment dependent on the polarizability p=o.e.

e the total molecular wavefunction is composed of electronic, vibrational,
rotational and translational components

lIltoral = V/el"//vibl//rotl//trans Equation 3

o we assume separability of the wavefunction and the associated
Schrodinger equations, (including the BO approximation) allow us to
"ignore" parts of the equation.

o we will now only be working with the .., part of these equations

e from now on I will use:

o  for electronic and y for nuclear wavefunctions
o subscript f=final state and subscript i=initial state

e applying the BO approximation and assuming that the dipole moment can be
written in terms of separate electronic and nuclear components we have:

Uy = JWfo (.ue +U, )Wi%idfedTn
= v 2, (w)v.xdrde, + [w,x, (1, )v.xdrdr,
= J%f [JWf (#e)l//idfe}%idrn + J.l//f |:J.Zf (AL"n )lidrn }//idfe

=2, () xdr, + [y, (u,)vdr,
Equation 4
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e we now need to distinguish between transitions on the same electronic state
and those between different electronic states

e a transition between vibrational states on the same electronic state is
experimentally “measured” by IR and Raman spectroscopy

o the first component is zero because the integrand is an odd function
[ 2w e, = [ 2, Jwi(w)wdz, |z, =0

because Jl//i u,)y.dt, = J‘l//iefl//id’[e = Jerl//l dt,=0

Equation 5
o and we need to evaluate the second component
[y (uydr,
= v [, () xaz, Jwar. = [wwdr.e [ 1, (1) xar,
Equation 6

:J-Zf W, %idl’n because J.l//il//idrezl

e a transition between different electronic states is experimentally
“measured” by UV-vis spectroscopy, however the effects of vibrational
transitions can sometimes be seen as fine-structure

o 1n this case the second component is zero because the electronic states are
orthogonal

v, (u, )y,
—Jl//fU;(f ;(,drn}y/dr —Jl//fl//dl' J;(f u, )(dr =0
because Jl//fl//id’cezO if f#i

o and we will need to evaluate the first component, this is something we will
consider in due course

Equation 7

[ 2w war, =[x, Jv, (u)wz, | xar,

Equation 8

e now we will consider vibrational transitions on the same electronic state,
Equation 8.

=2, (1) xa, —fo[eZZn n]xidn

o to progress we need to understand what is “under the hood” of this integral
and we need to know how to determine if the integral is zero or not.

o an advantage of spectroscopy is that we don’t need to evaluate the
integral! We just need to know if it is zero (no peak in the spectrum) or
not zero (a peak will be evident in the spectrum)

o at the moment we say nothing about how intense the peak will be!

Equation 9
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these will be
provided if you
need them in an
exam!

The Nuclear Vibrational Wavefunction
o first we need to know the form of the nuclear (or vibrational) wavefunction

¢ you have met the harmonic oscillator (HO) potential before Figure 1 shows a
picture of the solutions and the functional form of these solutions
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Figure 1 the HO Hamiltonian and wavefunctions
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e these solutions take the form of a polynomial multiplied by an exponential,

o the polynomial “looks after” the function going to zero (the oscillations)
o the exponential “looks after” the decay properties of the functions
(decaying to zero outside of the potential).

¢ H,(y) are Hermite polynomials, these are a set of functions (polynomials)
with a special name because they satisfy a set of specific rules.

HQ(.l') — 1 Hermite (physicists’) Polynomials
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Figure 2 Hermite polynomials'

o You have meet other special types of function before, Bessel functions
and spherical harmonics (angular solutions of electronic Schrédinger
equation) as well as associated Laguerre functions (radial solution of the
electronic equation), there is a reminder of the radial electronic solutions
in the OPTIONAL additional notes on-line.

o Hermite polynomials satisfy certain rules:

Recursion relation H  (y)=2yH (y)-2vH, (y)
Differential equation H'(y)-2yH!(y)+2vH (y)=0

+00

Orthogonality relation f H (y)H v,(y)e’y2 dy=0 v=V

+00 1

Normalisation f H,(y)H V(y)e""zdy =722y

Equation 10

! http://en.wikipedia.org/wiki/Hermite_polynomials
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IMPORTANT

e the harmonic oscillator solutions given above are those for a single vibration,
or single normal mode Q;

o the normal modes Q; are just the vibrations we have already seen, ie the
vector diagrams we generated in Lecture 3 which are also the coordinates
that diagonalise the Hessian (second derivative matrix).

o each normal mode has its own associated set of vibrational quantum
numbers V;.

o to differentiate between the total vibrational wavefunction (y) and the
individual HO solutions for each Q; I will refer to the individual solutions

as vi(Qy)
¢ in a molecule there are 3N-6 vibrations and so the total nuclear wavefunction
is made from a product of individual HO solutions for each normal mode:

=] [#(2)=9.1(0)9,.(0)9,5(Q,)--
i Equation 11
The Nuclear Dipole Moment

e we don't make a coordinate transformation to the normal modes for the dipole
moment, so continue to think of this as a vector with i, 1, and 1, components

e the nuclear dipole moment varies with the vibrational displacements of the
nuclei, thus we use a Taylor expansion in terms of the normal modes ( Q,)

o =“°+E(6Qk )OQ" 2(25) O+

o the first term gives the dipole moment when the displacement of atoms is
zero, ie the static dipole moment, L.

o the second and larger terms describe the change in the dipole moment as
the atoms move during a vibration

Equation 12

The Vibrational Selection Rules
e inserting [, into the equation for the transition dipole moment p; generates:

82
<%f\#o\x, +Z[8Qk]0<%f‘Qk|lz Z( 902 ] <%f‘Qk|%z

Equation 13

o in the zero order term |, is a constant and can be brought out of the
integral. By definition the vibrational states (on the same electronic state)
are orthogonal and because we are examining an excitation this integral
must be zero. Thus this term is eliminated

Xy |Mo| Xi) = Mo (X X:) = 0y =0
< f‘ 0‘ > O< f| > o Equation 14
o the second order and higher terms are assumed to be minimal

1358 | oot =c

o which leaves the first order term as the only significant contributor

Equation 15

Equation 16
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IMPORTANT

IMPORTANT

e the first order term has two components, both of these must be non-zero for
the transition dipole moment to be non-zero

(‘9—“) <0 and (x,]Qx)=0
0

90, Equation 17

o the first of these indicates that to be vibrationally active the nuclear dipole
moment must change or vary when the position of the atoms (nuclei)
change within the normal mode Q,. This is the first selection rule
for molecular vibrations.

e we can explore the second expression further
o first we think about the individual integrals

2= 00 (0)0,,(Q,) 0 (Q)0,(Q,) @), 6 (O, )

Xy = 00091 (Q,) -0 (0)9](Q,) 0L, Qs )

(x| x)

= [@(Q)+0[ Q)0 (9},(Q)-+9L(Q,)+)dQ, -+-dQ, -+
= [0/,(0)0},0)d0, - [ 9/ (0,)0,6,(0,)d0, -

=1

only one integral will not be 1, that for the Q, component
= [¢{(©)0,0,(0,)d0,
= (p/(0)]Q] 0. (0))

o this integral can be evaluated using the harmonic oscillator solutions and
annihilation and creation operators which are well beyond the
scope of this course.

o a simpler justification for this rule can be determined from the recursion
relationship of Hermite polynomials: 2yH (y)=H,,(y)+2H,_ (y):

|@,) = H,(Q)

(0/|0]@) = (¢, 0H, )
20H,(Q)=H, (Q)+2H, (Q) recursionrelation

Equation 18

<¢f‘Qk|¢i> oc%<¢f|Hi+l(Q)+2Hi—l(Q)>
o< <(pf‘ H,,, (Q)> + <(pf" H,_, (Q)>
oc <(pf q)i+1> + <(pf q)i—l>

— —
=0 unless f=i+1 =0 unless f=i—1

Equation 19

o two components result, the only way one of these components can be non-
zero (due to the orthogonality of the harmonic oscillator solutions) is if
f=i+1 or f=i-1.

o thus this integral is only non-zero when the vibrational quantum numbers
of the initial and final states differ by +1, and we arrive at the second
selection rule for vibrational spectroscopy: Av ==+1.
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e to determine if a Raman vibration is allowed we follow a similar procedure to
that covered for the static dipole moment:
o expand the polarizability with respect to the molecular vibrations or
normal modes (Qy) in a Taylor series
o eliminate various terms until only the first order term is left

u, = Z(%) (/|0 x:)e#0
k kJo
o the first factor of this term indicates that for a vibration to be Raman
active the polarizability must change or vary with the vibrating nuclei.
o the second factor is identical to that obtained for an infrared vibration to
be active and we arrive at the second selection rule that Av = +1.

Equation 20

The Direct Product and Integral Symmetry

e luckily to progress we don’t need to compute the value of the transition dipole
moment integral! We only need to know if the transition dipole is non-zero.
This is where symmetry is particularly powerful tool.

<Xf|)»\x,.>=0 A=a,u
Equation 21
e we now need two new pieces of information relating to symmetry groups and
these are:
o the direct product
o odd and even functions and their integrals
e when two irreducible representations are combined as a product, the operation
is called a direct product and is represented by the symbol ®
o to form the direct product the characters of each symmetry operator of the
representation are multiplied together
o for example the direct product A ® A, for the C3y point group is A,:

C,| E 2C, 3o, c, |E 20, 3o,

A |1 1 1 A, 1 1 1

4 | 1 1 - I 1 L

E |l 2 2 0 A®A, |1 1 -1 =4,
A®A =A,

Figure 3 Forming a direct product

e the irreducible representations of a point group are always orthonormal
o another way of stating this property is to say that the sum of characters for
a direct product of different IRs is always zero, and that the sum of
characters for the same direct product IRs (divided by the order of the
group) is always one (expand out the columns of point group first!)
o for the example above:

[AeD)+2*D+(3°-1)]=0
—_— —

E C, o Equation 22

e the direct product does not necessarily behave the way we are used to! For
example the direct product E® E for the C3y point group is {A, + A, + E}and

it contains multiple components.

Hunt / Lecture 5 6



o To determine the direct product for degenerate IRs, first form the direct
product and then reduce it using the reduction formula

C,, E 2C, 30,
E 2 -1 0
E | 2 -l 0.
E®E 4 1 0

A 1 1 1 =n, =é[(p4-1)+(2-1-1)+(3-0-1)]=g=1
A, 1 1 -1  =n, =é[(1-4-1)+(2-1-1)+(3-0--1)]=g=1
F_ ______ 2 _____ - 1 _____ Q = =%[(1-4-2)+(2-1-—1)+(3-0-0)]=g=1

thus EQE={A +A,+E}

Figure 4 Forming a direct product between degenerate IR

e there are short-cuts to working out a direct product these are listed with your
character tables.

o forexample A ® A, = A, since AQA=Aand 1®2=2

In-Class Activity

e form the product A, ® B, for the Cay point group explicitly by multiplying
the characters, then check your answer by using the "rules" in your hand-out.

Determination of Non-Zero Integrals

IMPORTANT

e functions that are totally symmetric have a non-zero integral, while
any functions that are not totally symmetric have zero integrals

e this is a key fact that we will be using extensively

a9 +9 +9 +9 +9
Figure 5 odd function f and even function g

+a

e if f is antisymmetric about x=0 then f(-x)=-f(x),and fis an "odd" function
and will have an integral of zero over a symmetric range —a to +a, Figure Sa
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e if g is symmetric about x=0 then g(-x)=g(x),and gis an "even" function
and will have a non-zero integral over a symmetric range —a to +a, Figure 5Sb

e if we consider the sign of the function over the interval a to —a, then the sign
of these functions belongs to the C, point group:

Cs | E o
A’ 1 1
A" |1 -1

Figure 6 odd and even functions f and g
o the sign of the odd function f spans the irreducible representation A” and
the sign of the even function g spans the irreducible representation A’

e thus functions that are totally symmetric have a non-zero integral, while any
functions that are not totally symmetric have zero integrals

e saying the same thing but more formally:

If an integrand is not a basis for the totally symmetric IR
of the group, then the integral is necessarily zero.

o there is one caveat, a function that has
has a non-zero integral by
symmetry may have a zero integral by
accident!

»
+
®

Figure 7 an integral is zero "by accident"

e consider first an integrals of the form f f *dr in the point group C;

f spans A" g spans A’ g spans A' and f spans A"
S fi=fxf g =gxg gf=gxf
spans A"®A"=A" spans A® A =A" spans ARQA"=A"

Equation 23

o the irreducible representation spanned by the square of a function is
always totally symmetric and will therefore have a non-zero integral by
symmetry (it can still be accidentally zero!)

o the irreducible representation spanned by a product of functions belonging
to different irreducible representations will not be totally symmetric and
will therefore have a zero integral by symmetry

e there is an additional level of complexity introduced by functions that span
degenerate irreducible representations, in this case the reduced representation
must contain the totally symmetric component.

o there is a little more detail for this in the OPTIONAL additional notes on-
line.
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e now we are ready to determine when a general integral is zero using
symmetry.
o an integral can only be non-zero if it has an intergrand (the central
functions inside the integral) that contains a totally symmetric component
o first evaluate the direct product of all the components of the integral
o if this is a reducible representation, reduce it to the component IR
o identify if there is a totally symmetric component

1=[f f fodt
Ly=T(HST(f[HOT(f,)
R R Equation 24
I'y=nI"+nI;+--
e for example we can evaluate the integral [ = <dx}‘ Z‘ dxz_y2> under the Cy4y point

group. The dxy function spans the B, IR, the dx2-y2 function spans the B
IR, and the z function spans the A IR. To be non-zero the direct product of
these IR must be Aj.

I= <dx), Z‘dxz_yz> —>T={B,®A®B]}

and B,®A =B, thenB,®B =A,
thusI'=A, 1=0

Equation 25

Using Symmetry to Determine Infrared and Raman Activity

IMPORTANT

e now we are ready to apply this general principle to our specific example

e we require that the transition dipole moment or transition polarizability matrix
be non-zero, ie that <Xf‘)\,|xi> =0 A=o,u

e for this integral to be non-zero at least one component must span the totally
symmetric irreducible representation of the point group of the molecule

e this is determined by forming the direct product of the components:

r' @r* @ I* where A = wora

Equation 26

o the ground vibrational state is always ) )
totally symmetric TV%) = A r(x*)
o the symmetry of the final state is the I(y*)

. oo I'(x)
symmetry of the excited vibration r=| Ty | ()
fol T(y _

il = I'(vibration) (when we have a ') [(xz)
single excitation) L(xy)
o the symmetry of the A components is I'(yz)

known, they reflect the symmetry of the translational vectors for u or the
binary functions for a

e for example we deduced the vibrational modes of water to be I',;,=2A1+B>
o we know the ground vibrational state is totally symmetric T'%/=A

o we know that the final vibrational state can be r<lf\ =Ajo0rBjp
o we know that p spans the IRs x=>B, y=>B, and z=>A,
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o we know that or o components span all the IRs (ie there is a binary
function associated with all of the IR)

e thus for F<"’ | =A1 we require the direct product to contain the A, IR:

Bl B]
{I_Mf®1_‘%">}®1_‘Z Z{A1®A1}® B, |=A®| B :{BI’B2’A1}
A A,
Equation 27

o Ihave used a “vector” notation to represent the dipole moment IRs

o Ihave used a “set” notation to indicate that the final integral will contain
components {B;, B,, A}

o only one of these components needs to be the A, IR for the integral to be
non-zero

o thus we find that the A, vibration is allowed => we will see an A, peak in
the infrared spectrum of water

In-Class Activity
e determine if excitation of the B, vibration of H,O is allowed for IR spectra:

e a similar process is followed for Raman activity, thus for F<Xf =A 1 wWe require
the direct product below to contain the A; IR:

e
A A
A B
{F<"f|®1"|)">}®l“"‘:{A1®A1}® s [=A® , |={4.B.4.8,]
1 2
A, B,
B, -
E:]uation_28

o as above I have used the a “vector” notation to represent the all the IRs
spanned by the binary functions. I have also used a “set” notation to
indicate that the final integral will contain components {A;, A,, B, B,}

o 1t is not necessary to include all the tensor components, we just need to
know the different IRs so if one IR is repeated we don’t need to repeat it
in the equations.

o only one of these components needs to be the A, IR for the integral to be
non-zero. Thus the A, vibration is allowed => we will see an A, peak in
the Raman spectrum of water
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IMPORTANT

In-Class Activity
e determine if excitation of the B, vibration is allowed for Raman spectra:

Phrasing of the Selection Rule

e the selection "rule" that we have previously been presented with was slightly
different, it was stated that a mode is

o infrared active if the IR of the vibration is the same as one of the
translational vectors

o Raman active if the IR of the vibration is the same as one of the binary
functions

e to arrive at this form of the rules we must note:

o the translational vectors have the same symmetry as the x, y and z
coordinate axes which form the components of the nuclear dipole moment

o the binary functions have the same symmetry as the matrix components of
the polarizability tensor.

o the totally symmetric mode is similar to the "identity" in matrix mechanics

and thus {Fm " } = {Fm ® A, } =TVl always spans the IR of the final
state as the initial state is totally symmetric

o that only “the direct product square” of an IR will generate the totally
symmetric IR T" ® ' € A, (plus some other components if the IR is
degenerate)

o thus {T"'@T"}@I* =T @I only contains the Aj IR when I/ =T

e thus we can only have an “allowed” transition when the vibration has the
same IR as the translational vectors (infrared) or binary functions (Raman)!

Key Points
e be able to explain the simplifications we have applied to the full transition
dipole moment equation

e be able to explain and discuss the general components of the harmonic
oscillator nuclear wavefunctions

e be able to show using a Taylor expansion the origin of the rule that “the
molecular dipole moment must change for infrared activity” and be able to
show the appropriate relationship for Raman activity

e be able to explain using equations the origin of the Av = +1 selection rule for
vibrational spectroscopy

e be able to demonstrate the direct product of IRs giving examples, both the
"long way" by explicit multiplication or IRs and using short-cuts

e be able to determine if an integral is zero or non-zero by symmetry
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e starting from an expression of the form A = < X f|A‘ x)=0 A=a,u,be able

to explain using direct products the origin of the vibrational selection "rules"
that a mode is infrared active only if the IR of the vibration is the same as one
of those for the translational vectors or a mode is Raman active only if the IR
of the vibration is the same as one of those for the binary functions

e be able to determine when a mode is IR or Raman active using the expression

{r<’“ ® r%'>}® T where A = [t or o

Self-Study / Tutorial / Exam Preparation Problems
e show that the A, and A, IRs of the C3y point group are orthonormal

e show that the irreducible representations of the point group C3 are

orthonormal (hint, don't forget that the pre-multiplied character is the complex
conjugate!)

A 1 1

€ e*
E
{ 1 e* £ }
€ = exp(2mi/3)

e form the direct product A, ® B, ® B, for the Cay point group using both a
character table and the crib sheet

C, | E c, C;
1
1

e determine the irreducible representations spanned by (x, y,z)2 under the C3y
point group
e form a direct product E, ® T, ® T, for the tetrahedral point group

e use the equation given below to identify and show which irreducible
representations of the C,, point group relate to modes that are IR active or
inactive.

A€ {r<lf ®F|Zi> ®F”}
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