Self-Study / Tutorial / Exam Preparation Problems

• show that the A_1 and A_2 IRs of the C_{3v} point group are orthonormal

$$C_{3v} \qquad E \qquad 2C_{3} \qquad 3\sigma_{v} \qquad C_{3v} \qquad E \qquad 2C_{3} \qquad 3\sigma_{v} \\ A_{1} \qquad 1 \qquad 1 \qquad 1 \qquad A_{2} \qquad 1 \qquad 1 \qquad -1 \\ A_{2} \qquad 1 \qquad 1 \qquad -1 \qquad A_{2} \qquad 1 \qquad 1 \qquad -1 \\ A_{1} \otimes A_{2} \qquad 1 \qquad 1 \qquad -1 \qquad A_{2} \otimes A_{2} \qquad 1 \qquad 1 \qquad 1 \\ = \frac{1}{6} \sum components \left\{ A_{1} \otimes A_{2} \right\} \qquad = \frac{1}{6} \sum components \left\{ A_{2} \otimes A_{2} \right\} \\ \underbrace{\left[(1 \cdot 1) + (2 \cdot 1) + (3 \cdot -1) \right]}_{E} = 0 \qquad \underbrace{\left[(1 \cdot 1) + (2 \cdot 1) + (3 \cdot 1) \right]}_{E} = 1$$

• show that the irreducible representations of the point group C₃ are orthonormal (hint, don't forget that ε* is the complex conjugate!)

$$\begin{array}{c|cccc}
C_3 & E & C_3^1 & C_3^2 \\
\hline
A_1 & 1 & 1 & 1 \\
E \left\{ \begin{array}{cccc}
1 & \varepsilon & \varepsilon * \\
1 & \varepsilon * & \varepsilon
\end{array} \right\} \\
\varepsilon = \exp(2\pi i/3)$$

$$\frac{1}{3} \Big[(1 \cdot 1) + (1 \cdot 1) + (1 \cdot 1) \Big] = \frac{1}{3} \Big[1 + 1 + 1 \Big] = \frac{3}{3} = 1$$

$$A \text{ and } E$$

$$\frac{1}{3} \Big[(1 \cdot 1) + (1 \cdot \varepsilon) + (1 \cdot \varepsilon^*) \Big] = \frac{1}{3} \Big[1 + e^{2\pi i/3} + e^{-2\pi i/3} \Big] = \frac{1}{3} \Big[1 - 1 \Big] = 0$$

$$e^{i\theta} = \cos \theta + i \sin \theta$$

$$e^{2\pi i/3} = \cos(\frac{2\pi}{3}) + i \sin(\frac{2\pi}{3})$$

$$e^{-2\pi i/3} = \cos(\frac{2\pi}{3}) - i \sin(\frac{2\pi}{3})$$

$$e^{2\pi i/3} + e^{-2\pi i/3} = 2\cos(\frac{2\pi}{3}) - i \sin(\frac{2\pi}{3})$$

$$E^{2\pi i/3} + e^{-2\pi i/3} = 2\cos(\frac{2\pi}{3}) = 2\cos(120^\circ) = 2 \cdot -0.5 = -1$$

$$E \text{ and } E$$

$$\frac{1}{3} \Big[(1 \cdot 1) + (\varepsilon \cdot \varepsilon^*) + (\varepsilon^* \cdot \varepsilon) \Big] = \frac{1}{3} \Big[1 + 1 + 1 \Big] = \frac{3}{3} = 1$$

$$\varepsilon \cdot \varepsilon^* = e^{2\pi i/3} \cdot e^{-2\pi i/3} = e^0 = 1$$

• form the direct product $A_2 \otimes B_2 \otimes B_1$ for the C_{2v} point group • using a character table $A_2 \otimes B_2 = B_1$ and $B_1 \otimes B_1 = A_1$

- o using the crib sheet $A \otimes B = B$ and $2 \otimes 2 = 1$ so $A_2 \otimes B_2 = B_1$, then $B_1 \otimes B_1 = A_1$ since $B \otimes B = A$ and $1 \otimes 1 = 1$
- determine the irreducible representations spanned by $(x,y,z)^2$ under the C_{3v} point group

$$(x,y) \Rightarrow E \quad z \Rightarrow A_1$$

$$(x,y,z) \Rightarrow E + A_1$$

$$(x,y,z)^2 \Rightarrow (A_1 + E) \otimes (A_1 + E)$$

$$A_1 \otimes A_1 = A_1 \quad A_1 \otimes E = E$$

$$E \otimes A_1 = E \quad E \otimes E = A_1 + A_2 + E$$

$$\Rightarrow 2A_1 + A_2 + 3E$$

o alternatively you could use the character tables

C_{3v}	\boldsymbol{E}	$2C_3$	$3\sigma_v$
$\Gamma(z)$	1	1	1
$\Gamma(x,y)$	2	-1	0
$\Gamma(x,y,z)$	3	0	1
$\Gamma(x,y,z)^2$	9	0	1

then use the reduction formula to determine $\Gamma(x,y,z)^2 = 2A_1 + A_2 + 3E$

• form the direct product $E_1 \otimes T_1 \otimes T_2$ for the tetrahedral point group

T_d	E	$8C_3$	$3C_2$	$6S_4$	$6\sigma_d$
E	2	-1	2	0	0
T_1	3	0	-1	1	-1
T_2	3	0	-1	-1	1
$E \otimes T_1 \otimes T_2$	18	0	2	0	0

$$\frac{T_d}{E \otimes T_1 \otimes T_2} \begin{vmatrix} E & 8C_3 & 3C_2 & 6S_4 & 6\sigma_d \\ E \otimes T_1 \otimes T_2 & 18 & 0 & 2 & 0 & 0 \end{vmatrix}
A_1 \qquad 1 \qquad 1 \qquad 1 \qquad 1 \qquad 1 \qquad \Rightarrow n_{A_1} = \frac{1}{24} \left[(1 \cdot 18 \cdot 1) + 0 + (3 \cdot 2 \cdot 1) \right] = \frac{24}{24} = 1
A_2 \qquad 1 \qquad 1 \qquad 1 \qquad -1 \qquad -1 \qquad \Rightarrow n_{A_2} = \frac{1}{24} \left[(1 \cdot 18 \cdot 1) + 0 + (3 \cdot 2 \cdot 1) \right] = \frac{24}{24} = 1
E \qquad 2 \qquad -1 \qquad 2 \qquad 0 \qquad 0 \qquad \Rightarrow n_{A_2} = \frac{1}{24} \left[(1 \cdot 18 \cdot 2) + 0 + (3 \cdot 2 \cdot 1) \right] = \frac{42}{24} = 2
T_1 \qquad 3 \qquad 0 \qquad -1 \qquad 1 \qquad -1 \qquad \Rightarrow n_{A_2} = \frac{1}{24} \left[(1 \cdot 18 \cdot 3) + 0 + (3 \cdot 2 \cdot -1) \right] = \frac{48}{24} = 2
T_1 \qquad 3 \qquad 0 \qquad -1 \qquad -1 \qquad 1 \qquad \Rightarrow n_{A_2} = \frac{1}{24} \left[(1 \cdot 18 \cdot 3) + 0 + (3 \cdot 2 \cdot -1) \right] = \frac{48}{24} = 2$$

$$E \otimes T_1 \otimes T_2 = \{A_1 + A_2 + 2E + 2T_1 + 2T_2\}$$

 Use the equation given below to identify and show which irreducible representations of the C_{4v} point group relate to modes that are IR active or inactive.

$$A_{\mathbf{1}} \in \left\{ \Gamma^{\left\langle \chi_{f} \right|} \otimes \Gamma^{\left| \chi_{i} \right\rangle} \otimes \Gamma^{\mu} \right\}$$

- o To determine IR active modes the transition dipole moment must be non-zero and this integral is non-zero only when the above relationship holds.
- O Since the ground state is always totally symmetric $(A_1 \text{ in } C_{4v})$ this expression can be simplified to $A_1 \in \left\{ \Gamma^{|\chi_i\rangle} \otimes \Gamma^{\mu} \right\}$ for each of the x,y,z components of the dipole vector.
- \circ For the C_{4v} point group the component irreducible representations of the dipole moment vector are A_1 and E.
- \circ Potential vibrations ie symmetry of the final state are A_1 , A_2 , B_1 , B_2 and E.
- The cross products of A_1 with the group of IRs A_1 , A_2 , B_1 , B_2 will just regenerate the identical IRs, thus only $A_1 \otimes A_1 = A_1$ is viable in the first set.
- o The cross products of E with the non-degenerate irreducible representations are all E and thus cannot be IR active.
- This leaves $E \otimes E = \{A_1 + A_2 + B_1 + B_2\}$ which does contain A_1 and so E is a viable vibration.
- o Therefor A_1+E are IR active and $A_2+B_1+B_2$ are not IR active