Atomic Electronic States

In Class Problem

- calculate how many microstates the d⁴ configuration has
 - \circ n=2*5=10, n_e=4 and n_h=6

$$N = \frac{10!}{4!6!} = \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1)(4 \cdot 3 \cdot 2 \cdot 1)} = \frac{10 \cdot 9 \cdot 8 \cdot 7}{4 \cdot 3 \cdot 2 \cdot 1} = \frac{5040}{24} = 210$$

In Class Problem

- if l=2 how many states are there and what are the m_1 values?
 - o if l=2 then there are 2l+1 states =2.2+1=5 states
 - o if $l=2 \text{ m}_1$ values span l, (-l+1)...(l-1), l thus the values are -2, -1, 0, 1, 2
 - o these are just the l and m_1 values for the dAOs!