Electronic Selection Rules ()

Introduction

e clectronic transitions can occur in the visible range leading to colour, for
some examples see the web-links

e how do transition metal complexes produce colour? We already know it has
to do with excitations in the dAO based MOs of a complex, and that these
are sensitive to the coordinating ligands (spectrochemical series).

e you made NiCl,(PPhs), in the 1% year lab and studied the tetrahedral vs
square planar isomers which are green and red respectively

e the visible spectrum runs from 400-700nm and UV-vis spectroscopy is the
typical way to study soluble coloured complexes

e at longer wavelengths are infra-red (heat cameras) and at shorter
wavelengths is ultra-violet light (bee/butterfly vision)

¢ in chemistry we typically meet coloured transition metal complexes, but the
presence and use of colour is much broader. Chemistry meets art in the
Roger Hiorns installation in Peckham, London, which uses bright blue
CuSO,

e pigments are typically coloured solids, where crystal field theory gives us a
very basic model such as Cr surrounded by 6 oxygen atoms in Cr,O3*H,O
also known as the dark-green colour called viridian. Rubies are red and
emeralds are green for similar reasons.

e however, there are also other more complex solid state process that can give
rise to colour, such as transitions from the valence to conduction band in
insulators.

e dyes typically involve an organic molecule and a n->7* or ©-> m* transition,
dyes include cloth dyes, indicators, as well as colourants for plastics, food,
cosmetics, glass, paints, soaps, and for use in ink-jet printers!

¢ in small nanoparticles, those about the size of the wavelength of visible light,

the electric field of the light can (induce) an oscillating dipole within the

nanoparticle (collective movement of the free electrons in the metal=surface

plasmons) leading to the emission of secondary radiation, and absorption in

the visible range and excitation of the surface plasmons.

o historical applications include stained glass

o applications include modern biological and chemical sensing,
developments in photovoltaics and quantum optics, and surface enhanced
Raman spectroscopy

¢ novel materials are being synthesised within ionic liquids, which allow the
formation of clusters and nanoparticles

The Visible region
e the visible region is 350-750nm

e approximate ranges are:
o 380-450 nm violet, 450-485 nm blue, 485-500 nm cyan, 500-565 nm
green, 565-590 nm yellow, 590-625 nm orange, 625-740 nm red.
o you should know this ordering! (the exact range for each colour is not
required)
e just higher is ultra-violet, and just lower is the infra-red spectrum
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UV-Vis Spectroscopy

e UV-vis spectroscopy is used extensively to study coloured transition metal
complexes

e think back to carrying out a UV-vis experiment. We know from the Beer
Lambert rule that the absorbance(A) depends on the molar absorption
coefficient (¢) the concentration (c) and the dimension of the cuvette (/)

A=-log, (170) =¢ecl =kl Equation 1

o the extinction coefficient ¢ or absorption coefficient « contains
the molecule specific information that we need to understand, it is related to
the ability of the molecule to interact with the incident light. The absorption
coefficient will be dependent on:

o the energy of the incident light wave which must exactly match the
difference in energy between initial and final
rotational/vibrational/electronic energy levels AE =7iv,

o not all such transitions are "allowed" the Einstein coefficient, B gives the
probability that a transition will occur

o the molecule must also have a population inversion (N;-Ny) between the
ground and excited state

hv,
kK'=—=B,(N,-N,)
c Equation 2
o we have assumed a perfectly sharp absorption, in reality there will be a
small range of frequencies, and an absorption peak of finite width, in
which case we would integrate k' over the range of frequencies, v
e the probability that a molecule absorbs light is given by the Einstein
coefficient, B; which depends on the transition dipole moment

2
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if fi 680h2

= _[1// Au,)dr, = <1//f‘ 4|y} Equation3

o we can determine when the transition dipole moment is non-zero through
symmetry, thus we need to know the symmetry of the initial and final
electronic wavefunctions

Pure Electronic Selection Rules
e for an electronic transition between different electronic states

U, = _[;(f (1) xdr, = _[xf Ul//f (‘ue)l//idfg}lid’[n Equation 4

o while there can also be a vibrational and rotational transition at the same
time, we will first restrict our description to a pure electronic transition

=, (1w e,
= <'7Uf|‘ue l//i>

o where y; is the final electronic state, y; is the initial electronic state and .
is the electronic dipole moment

Equation 5
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¢ to determine weather a transition occurs we do not need to actually evaluate
the electronic integrals, we only need to know if they are zero or non-zero

o we only need to determine if the direct product of the symmetry of the
functions forming the integrand are totally symmetric

o to do this we need to know the symmetry of the y; and y; electronic states
and to combine this with our knowledge of the symmetry of the electronic
dipole moment

for a molecule we determine the symmetry of an electronic state by taking
the direct product of the IRs for all the electrons in each electronic
molecular orbital

o for a spin paired system this is easy because with two electrons in an
orbital the direct product is always the totally symmetric IR

o thus we only need to consider the symmetry of any unpaired electrons, or
electrons in HOMOs of degenerate symmetry

o for example water has a configuration (1a,)*(2a,)*(1b,)*(3a,)*(1b,)?, Figure 1
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Figure 1 MO diagram of water
o the ground state of water is A; because all of the electrons are paired:
A®A =A B®B =A B,®B,=A
(1a,)*(2a,)*(1b,)* (3a,)*(1b,)’
=A®ARPAR®A®A =A

o an excitation of le from the 1b, HOMO to the 2b, MO gives a final state
of A, symmetry

(1a,)*(2a,)*(15,)* (3a,)* (1b,)' (2B,
=[A ®A ®A ®A|®B,®B
=A®B,®B =A,
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o an excitation of 2e from the 1b, HOMO to the 2b, MO gives a final state
that has A; symmetry

(1a,)*(2a,)*(1b,)* (3a,)* (1b,)° (2b,)*
=AQAR®ARAR®A =A

o we then evaluate if the transition dipole moment integral is zero or not:

B, B,
[A®ater =40 B |={8.5.4} {ses}er'=4® B |={5.5[A]
A A

o thus a single excitation from the 1b, to 2b; MO is not allowed but the
double excitation is allowed (assuming the multiplicity remains constant)

o water is a trivial example, and more commonly the selection rules are
applied to organic chromophores and transition metal complexes

The Spin Selection Rule

e 3o far we have not mentioned that the electronic wavefunction includes a
spin component

o you have met the “spin selection rule” before, this states that
transitions between states of different spin are forbidden, Figure 2
actually for transition metal complexes it is normally phrased as the spin
multiplicity cannot change (we will discuss multiplicity shortly).

we can factor the electronic wavefunction into a spatial and spin
components, the electronic dipole moment does not depend on spin and is
evaluated as shown above

the spin component reduces to a simple “orthogonality” relationship
represented by 04 and the whole integral will be zero if the initial and
final states have different spin

o

o

=, (1 )ydr#0

v, =y.s(0,) s(c)=a,p

o=, (1, vdte [5,(0)s5,0)ds %0
(a|B)=0 (a|a)=(B|B)=1

o= [, (1, )pdte,,#0

Equation 6

Imperial College Imperial College

Factors controlling L.; : Electron Spin Factors controlling . : Electron Orbital Symmetry

3| 3 b b
<w¢;1ec e l//l?/er> _ <V/7 bl//;pm e W]mbl//lspm> _ <l//;' b|e£|l//’mb><wifpm l//’xpm> <,//;r er|y o > = .[V/;r *er ¥y s
: ? all.space
:uﬁ oC <l//}pi” | t//iw”> Symmetric Function: e.g.: S(x) = x2 Antisymmetric y
L . R 7 Antisymmetric function: e.g.: AS(x) = x _ 2& |
« Spin indep of electron position (r). ' ' Note:  AS *AS = Symmetric: e.g.: x * x = X2 y=X
« Electron spin is either up or down: T or ¢ w e - ! -9
« T and { are ‘orthogonal’ wavefunctions: i ’i ai < i / AS * S = Antisymmetric: e.g.: x * x? = x*
» X
N s o -y =
1 n AS functions integrate to zero: e.g.: I x.dx=0
A==t (g0 = oz [
|T> |¢> Integral = 0 if y and y°* have same symmetry

« Orbital symmetry defined by quantum number L:
« Atoms: L=0, s-orbital, symmetric, L=1, p-orbital, antisymmetric. No need to

|—"memorize

* This gives the Spin Selection Rules: AS = 0: Allowed Transition
«Selection Rule AL= + 1

Singlet — Singlet allowed. Singlet — Triplet forbidden
* Hence excited states generated by light absorption are nearly always singlets
(as ground states normally singlets).

« Molecules: Symmetry defined as gerade, g and ungerade, u info in box

Selection Rule, g— u, u— g allowed; g— g, u— u, forbidden

More generally: p large if 2™ and y°™® overlap spatially and change of orbital symmetry

Figure 2 Slides from your photochemistry course with Saif Haque
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The Parity Selection Rule
e parity is also very important

o the parity selection rule: transitions must occur between states of the
different parity. Thus, only transitions that involve a g->u or u->g
transition are allowed. Or alternatively we say that the parity must
change, Figure 2.

o orbitals with even parity are labelled “g” gerade which is German for
“even”. This means that under inversion there is no sign change, gerade
orbitals are symmetric for i, Figure 3

o orbitals with odd parity are labelled “u” ungerade which is German for
“odd. This means that under inversion there is a sign change, ungerade
orbitals are antisymmetric for i.

cC, | E i
Al 1
Al 1T A

u

Figure 3 C; character table

o the electronic dipole moment has ungerade parity (as it depends on x,y and
z which are ungerade), sometimes we just say the dipole moment is an odd
function

o this means that for the transition dipole integrand to contain the totally

symmetric IR, the direct product {F<lf | ® F"f>} must be ungerade (u). For

this to be true one of the initial or final states must be u and the other must
be g. That is there must be a change in parity during the excitation.

e the parity selection rule is often conflated with the “Laporte selection
rule”, which is an angular momentum selection rule: a transition must
involve angular momentum change of plus/minus 1, Al=+1,

o sAOs have g parity and pAOs have u parity, thus and s->s or a p->p
transition is forbidden by parity. Putting this together you can see that a
transition is only allowed if we have a change in angular momentum
because that allows a change in parity

o notice that the parity selection rule still allows a d->s transition, but the
Laporte selection rule forbids this as this is a change of Al=2

o these rules lead to d-d transitions in TM complexes being "forbidden"
because they involve a d-d transition (no angular momentum change) and
because they involve a t,, to e, transition and thus involve a g->g transition
(parity selection rule)

o clearly transition metals still have d-d transitions, so how are these rules
“broken”? We will discuss this later!

Atomic Electronic States
e pure electronic transitions within TM complexes or in the solid state depend,
to a first approximation, on the nature of the dAOs in the isolated cation ie
where the TM is a “free ion”.
o this is particularly true for weakly interacting ligands where the metal
dAOs are not substantially perturbed
o and also in the solid state, where ionic bonds rather than covalent bonds
dominate
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IMPORTANT

IMPORTANT

o when the ligands are strong field ligands we need to take another
approach, treated shortly

o thus to study TM isolated cations or "free ions" in more detail we need to
go back and consider the orbital characteristics of atoms in more detail, we
need to know the exact symmetry of initial and final electronic states so
that we can determine if a transition should occur

this is going to involve some tough quantum mechanics!

don’t try to understand it all the first time you read it ...

on the first reading soak up the concepts and then come
back again focusing more on the details

you are already aware of the different components of the electronic
wavefunction:

v,=R,1)Y, 0.9)s,, (O) Equation 7

o we have the principle quantum number which relates to the radial equation
o the angular quantum numbers which relate to the angular solutions
o and the spin quantum number which relates to the spin component

for example in labelling the atomic configuration of an atom such as carbon
we would write: C 1s*2s*2p? -> this looks easy. Actually it is not so easy!!

we have quietly ignored the fact that there are three 2p AOs

o p really means 1=1 where 1 is the angular momentum of the orbital (1=0
called s and 1=2 called d and so on)

o eachlhas m=-1, (-1+1) ...0... (I-1), ] associated with it

o so0 pAO has m=-1,0, 1 and there are the three different pAOs, each of
these orbitals has a different symmetry.

o which of these pAOs do the electrons occupy?

we have also ignored the fact that the electrons have spin

we know from experiment that s takes on only one value s=1/2

the m, values for s are defined similarly to m;; my=-s, (-s+1) ...0... (s-1), s
if s=1/2 the possible m, values are (-s)=-1/2 and (-s+1)= (-1/2+1)=s=1/2
thus one electron can have spin m=+1/2 or m,=-1/2, you might be more
familiar with the o and 3 terminology!

o are our two pAOQ electrons spin paired or do they have parallel spins?

O O O O

it is evident we need a more detailed and accurate description of the states of
atoms and molecules.

o for example a single electron p' electron has 6 possible microstates, it
can have a value of m;=-1, 0, 1 and each of these can have m:=+1/2, -1/2

o determining the number of microstates for more than one electron is made
more difficult because electrons are indistinguishable and some of the
microstates are identical and we only count the unique states

o however there is a useful formula when n=2*number of orbitals and n.=
the number of electrons and n,=number of holes:

N = n!

Equation 8
n,\n,!
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o

o

thus for p? there are n=6, n.=2 and n,=4, giving 15 microstates

N= 6!  6e5¢4e3e2e1 65
2140 (2e1)(43e201) 2
these microstates do not all have the same energy, this is because the e-e
interactions are different, e-e repulsion changes, e-e exchange changes,

and electrons that are parallel have different energies from electrons that
are spin paired

15

In Notes Problem

e calculate how many microstates the d* configuration has:

number of orbitals =
number of electrons =
number of holes =

work out the equation ...

e the situation is significantly more complex for five dAOs, the larger number
of electrons means a much larger number of microstates, Table 1

dn

dl d2 d3 d4 dS d6 d7 d8 d9 le

microstates | 10 45 120 | 210 | 252 | 210 |120 |45 10 1

Table 1 microstates for different dAO configurations

Quantum Mechanics of Angular Momentum

e itis clear we need a better description of the atomic states, and that this will
involve energy levels or states with a large number of degeneracies

e in this section I will only give a rough outline, as you don’t yet have
sufficient quantum mechanics to treat this topic properly.

e you are directed to relevant textbooks for a full explanation, for example see

Chapter 4: Angular Momentum in Atkin’s “Molecular Quantum Mechanics

2

e you have meet angular momentum in the context solving the Schrédinger
equation for the Hydrogen atom

o

different people use different notations I am going to use / for the orbital
angular momentum vector, just the way a position vector can be
defined r= xi+ yj+zk where i, j and k are the orthogonal Cartesian unit
vectors, linear momentum can also be defined p= p.i+ p,j+p.K, and also
angular momentum /= Li+ [,j+/k

the length of a vector can be described as r>=x?+y?+z2, and the length of
the angular momentum vector can be defined *=[>+[,>+1,2

when using angular momentum we focus on the following eigenvalue
equations for /? and /,, the eigenfunctions are the spherical harmonics

Y (0,p) and the eigenvalues are the quantum numbers / and m;:

I’Y(6,9)=1(1+Dr’Y(6,9) 1=0,1,2...

Equation 9
1Y (0,0)=mhY(0,0) m=—(=[+1)...(I-1),l

notice that for each [ value we will have 2/+1 m; states
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¢ the length and z-component of the angular momenta commute [/2, [,],
however the length and the x- or y- components do not commute.
o we focus on /2 and /, because they both commute with the Hamiltonian
o any operators that commute have the same eigenfunctions and so this is an
easy way to determine the eigenfunctions for H
o operators that commute with H are the only observable operators, and thus
these are the operators that are important in spectroscopy
¢ instead of writing the eigenfunctions in the spherical harmonic notation it is
common to represent the eigenfunctions in a Dirac notation, emphasising the
quantum numbers for each wavefunction:

l2
lZ

Lm)=1(1+DR*|l,m,) 1=0,1,2...
Lm) m,=—1,(-1+1)...(0-1),]

Equation 10

l,m,>=mlh

In Notes Problem

IMPORTANT

e if /=2 how many states are there and what are the m, values?

e the orbital angular momentum functions /? and /, are particular cases of the
general class of angular momentum operators, this class all have similar
equations, if we assume a general angular momentum vector k then:

k| k,m, )= k(k+Dn*|k,m,) k=0,1,2...
k|kom)=mhlkm) m,=-k(-k+1)...(k—1),k

o for each k value we will have 2k+1 m, states

e it may not have been explicitly stated before, but “spin” is a special form of
an angular momentum operator, the spin operators are s> and s,, the
eigenfunctions are |s,m> and the eigenvalues are quantum numbers s and m;

1
s,ms> SZO,E,IE,Z...

Equation 11

s,ms> =s(s+ i’

2
N
Equation 12

s,ms> m,=-s,(=s+1)...(s=1),s

s, s,ms> =mhs

o the quantum number s is called the spin of the particle, mathematically
there is no restriction on s! However, experiment shows that all electrons
have a single value of s=1/2. Protons and neutrons also have s=1/2, pions
have s=0 and photons have s=1.

o the electron spin eigenfunctions for electrons are defined as o and 3

1
s 272

1 Equation 13
>=ﬂ:> SB =_Ehﬂ

11 1
s,md,>=‘5,5>= o => SZOC = EhOC
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e getting back to our multi-electron system, we can identify individual angular
momentum vectors /; and spin s; for each electron. The individual momenta
commute with each other and so for a multi-electron system we can write a
single wavefunction dependent on the individual quantum numbers:

l,m,l mﬂ,---> Equation 14

512722

e however in a molecule the individual angular momenta are not useful for us,
we are interested in the total angular momenta vectors: total orbital
angular momentum (L) and total spin (S)

L=Y1 $=3%35

Equation 15

o these have an associated component in the z-direction L, and S, and an
associated magnitude for the total orbital angular momentum (L?) or total
spin magnitude (S?)

o the total angular momentum operators are within the class of angular
momentum operators and so fit the same pattern for satisfying the
eigenvalue equations:

LCO=L(L+Di’*® L=0,172...
LO=M,h® M,=-L,(-L+1)...(L-1),L
Equation 16
S*O=5ES+)*d S$=0,1,2...
SO®=MHud M;=-S,(-S+1)...(S-1),S

o the eigenfunctions depend on the total quantum numbers and
parametrically on the individual electron quantum numbers:

|L,ML;ll,lz--~> Equation 17

e the associated quantum numbers can be a bit difficult to work out! The best
technique is to start by working out the m;, and ms values and from those
work out the possible L and S quantum numbers. Please see L7 and the
exam preparation problems from L7 for more details.

o for example if we had 2 electrons:

A A

L=1+1, S=5+5,

M, =m,+m, Mg=m, ,+m,

L=1+0L,0+L =D, +L,=2) |, =L)  S=s+5,.05+5,-1,(s;+5,—2),(s, = 5,)
number of states= (21, +1)(2/, +1) number of states= (2s, +1)(2s, +1)
|L.M,:1,.,) S, Mg:s,.8,)

Equation 18

o working out the coupling of more electrons is difficult and is usually
carried out by coupling 2 electrons and then coupling the resulting
momenta/spin with the 3™ electron and so on; coupling is worked out
pairwise. Coupling of more than 2 electrons is beyond this course!
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IMPORTANT

¢ the operators L? and S? commute with the Hamiltonian and thus are

important quantities for spectroscopy and for defining the multi-electron

wavefunctions or eigenvectors.

o the allowed values of L and S form the Clebsch-Gordan series

o we use the quantum numbers (L and S) to define the electronic states of
multi-electron systems

o similarly to single electron systems where 1=0, 1,2... are replaced by s, p
d ... we replace the total angular momentum eigenvalues L=0,1,2 ... by
S, P, D ... with the capital letters indicating a total angular momentum
rather than an individual orbital angular momentum

o spin is not specified directly by S but by the multiplicity=2S+1

¢ the eigenfunctions one works with can change depending on which momenta

are the focus, for example the wavefunction for two particles
o can be defined by the individual angular momenta: |;,m, )|i,m,,)
o or they can be defined by the total angular momenta: |L,M;1,.1,)

o L?does not commute with the individual 1,; and so these two sets of
eigenfunctions are different, however it is possible to interconvert them

where the coefficients are known as the Clebsch-Gordan coefficients

|LT ML ’l2> = ZC(LT ML my, ’m12)| llmll>| lzm12>
Equation 19

o think of this as expanding the total (angular momentum) wavefunction in
terms of the individual (angular momentum) wavefunctions

e angular momentum is complex and we have just touched on it here, there is
much more, see specialist texts on quantum mechanics if you are interested

Spin Orbit Coupling

e spin-orbit coupling occurs when the spin and orbital angular momenta
couple, this can occur via two mechanisms
o the total angular momenta S and L couple to form J
o the total coupled angular momentum has equations exactly analogous to
the total angular momentum and spin momentum operators, Figure 4

JZ

J=L+S§ J =L +S.

M,=M,+M,
J=L+S,(L+S-1)..|L-]
JO=JJ+Dr*® J=0,1,2...
JO=M® M,=-J,(-J+1)...0-1),J

Equation 20

!

Figure 4 L and S (orbital and spin) angular

momenta coupling.!

o this type of coupling is called Russell-Saunders coupling or L-S
coupling, and is appropriate for systems where the electron-electron
repulsive interaction is larger than the spin-orbit coupling

! Image from http://en.wikipedia.org/wiki/Angular_momentum_coupling, 25 Feb 2014
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o spin-orbit coupling is a relativistic effect and thus when atoms get heavy
(and the inner electrons are moving near the speed of light) relativistic
effects can dominate electron-electron repulsion.

o 1n this case spin-orbit coupling occurs at the individual electron level and
this type of coupling is called j-j coupling

.;i:ii+§i
jl.2(D=j(j+1)h2(I) j=0.,1,2...
jzi(l)ijhq) mj=—j,(—j+1)...(j—1),j

J:Z.}i

o for most heavy atoms the reality sits somewhere between j-j and L-S
coupling and calculations are difficult! For 3d and 4d transition metals we
can work in the L-S coupling scheme

o for the heavier elements we need to consider the j-j coupling scheme, this
is very relevant in your “Lanthanides and Actinides” course.

Equation 21

Key Points

be able to describe some of the many instances in which colour is evident in
the lab and in “real life”

be able to make a connection between a UV-vis experiment and the
mathematics that describes electronic transitions

be able to determine the symmetry of the ground and excited electronic
states for a simple molecule (like H,O)

be able to use the transition dipole moment to determine when a transition
will occur

be able to explain the spin and parity selections rules

be able to determine the number of microstates for a given atomic
configuration

know the eigenvalue equations for the general class of angular momentum
operators, 1,s,L.,S,jand J

Self-Study / Tutorial / Exam Preparation Problems

e no practice problems, spend your time going over the equations covered today

Hunt / Lecture 6 11



