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Electronic Selection Rules (I) 
Introduction 
• electronic transitions can occur in the visible range leading to colour, for 

some examples see the web-links 
• how do transition metal complexes produce colour?  We already know it has 

to do with excitations in the dAO based MOs of a complex, and that these 
are sensitive to the coordinating ligands (spectrochemical series). 

• you made NiCl2(PPh3)2 in the 1st year lab and studied the tetrahedral vs 
square planar isomers which are green and red respectively 

• the visible spectrum runs from 400-700nm and UV-vis spectroscopy is the 
typical way to study soluble coloured complexes 

• at longer wavelengths are infra-red (heat cameras) and at shorter 
wavelengths is ultra-violet light (bee/butterfly vision) 

• in chemistry we typically meet coloured transition metal complexes, but the 
presence and use of colour is much broader.  Chemistry meets art in the 
Roger Hiorns installation in Peckham, London, which uses bright blue 
CuSO4  

• pigments are typically coloured solids, where crystal field theory gives us a 
very basic model such as Cr surrounded by 6 oxygen atoms in Cr2O3•H2O 
also known as the dark-green colour called viridian.  Rubies are red and 
emeralds are green for similar reasons.   

• however, there are also other more complex solid state process that can give 
rise to colour, such as transitions from the valence to conduction band in 
insulators. 

• dyes typically involve an organic molecule and a n->p* or p-> p* transition, 
dyes include cloth dyes, indicators, as well as colourants for plastics, food, 
cosmetics, glass, paints, soaps, and for use in ink-jet printers! 

• in small nanoparticles, those about the size of the wavelength of visible light, 
the electric field of the light can (induce) an oscillating dipole within the 
nanoparticle (collective movement of the free electrons in the metal=surface 
plasmons) leading to the emission of secondary radiation, and absorption in 
the visible range and excitation of the surface plasmons. 
o historical applications include stained glass 
o applications include modern biological and chemical sensing, 

developments in photovoltaics and quantum optics, and surface enhanced 
Raman spectroscopy 

• novel materials are being synthesised within ionic liquids, which allow the 
formation of clusters and nanoparticles 

The Visible region 
• the visible region is 350-750nm 
• approximate ranges are: 
o 380-450 nm violet, 450-485 nm blue, 485-500 nm cyan, 500-565 nm 

green, 565-590 nm yellow, 590-625 nm orange, 625-740 nm red. 
o you should know this ordering! (the exact range for each colour is not 

required) 
• just higher is ultra-violet, and just lower is the infra-red spectrum  
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UV-Vis Spectroscopy 
• UV-vis spectroscopy is used extensively to study coloured transition metal 

complexes 
• think back to carrying out a UV-vis experiment.  We know from the Beer 

Lambert rule that the absorbance(A) depends on the molar absorption 
coefficient (e) the concentration (c) and the dimension of the cuvette (l) 

 
  Equation 1 

• the extinction coefficient e  or   absorption coefficient k contains 
the molecule specific information that we need to understand, it is related to 
the ability of the molecule to interact with the incident light. The absorption 
coefficient will be dependent on: 

o the energy of the incident light wave which must exactly match the 
difference in energy between initial and final 
rotational/vibrational/electronic energy levels  

o not all such transitions are "allowed" the Einstein coefficient, Bfi gives the 
probability that a transition will occur 

o the molecule must also have a population inversion (Ni-Nf)  between the 
ground and excited state 

   Equation 2 

o we have assumed a perfectly sharp absorption, in reality there will be a 
small range of frequencies, and an absorption peak of finite width, in 
which case we would integrate k' over the range of frequencies, n 

• the probability that a molecule absorbs light is given by the  Einstein 
coefficient, Bfi which depends on the transition dipole moment 

     Equation 3 

o we can determine when the transition dipole moment is non-zero through 
symmetry, thus we need to know the symmetry of the initial and final 
electronic wavefunctions 

Pure Electronic Selection Rules 
• for an electronic transition between different electronic states 

 

  Equation 4 

o while there can also be a vibrational and rotational transition at the same 
time, we will first restrict our description to a pure electronic transition 

 

  Equation 5 

o where yf is the final electronic state, yi is the initial electronic state and µe 
is the electronic dipole moment 
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• to determine weather a transition occurs we do not need to actually evaluate 
the electronic integrals, we only need to know if they are zero or non-zero 
o we only need to determine if the direct product of the symmetry of the 

functions forming the integrand are totally symmetric 
o to do this we need to know the symmetry of the yf and yi electronic states 

and to combine this with our knowledge of the symmetry of the electronic 
dipole moment 

• for a molecule we determine the symmetry of an electronic state by taking 
the direct product of the IRs for all the electrons in each electronic 
molecular orbital 
o for a spin paired system this is easy because with two electrons in an 

orbital the direct product is always the totally symmetric IR 
o thus we only need to consider the symmetry of any unpaired electrons, or 

electrons in HOMOs of degenerate symmetry 
• for example water has a configuration (1a1)2(2a1)2(1b1)2(3a1)2(1b2)2, Figure 1 

 
Figure 1 MO diagram of water 

o the ground state of water is A1 because all of the electrons are paired: 

 

o an excitation of 1e from the 1b2 HOMO to the 2b1 MO gives a final state 
of A2 symmetry 
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o an excitation of 2e from the 1b2 HOMO to the 2b1 MO gives a final state 
that has A1 symmetry 

 

o we then evaluate if the transition dipole moment integral is zero or not: 

 

o thus a single excitation from the 1b2 to 2b1 MO is not allowed but the 
double excitation is allowed (assuming the multiplicity remains constant) 

o water is a trivial example, and more commonly the selection rules are 
applied to organic chromophores and transition metal complexes 

The Spin Selection Rule 
• so far we have not mentioned that the electronic wavefunction includes a 

spin component 
o you have met the “spin selection rule” before, this states that 

transitions between states of different spin are forbidden, Figure 2 
o actually for transition metal complexes it is normally phrased as the spin 

multiplicity cannot change (we will discuss multiplicity shortly). 
o we can factor the electronic wavefunction into a spatial and spin 

components, the electronic dipole moment does not depend on spin and is 
evaluated as shown above 

o the spin component reduces to a simple “orthogonality” relationship 
represented by dab and the whole integral will be zero if the initial and 
final states have different spin 

 

  Equation 6 

   
Figure 2 Slides from your photochemistry course with Saif Haque 
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The Parity Selection Rule 
• parity is also very important 
o the parity selection rule: transitions must occur between states of the 

different parity.  Thus, only transitions that involve a g->u or u->g 
transition are allowed.  Or alternatively we say that the parity must 
change, Figure 2. 

o orbitals with even parity are labelled “g” gerade which is German for 
“even”.  This means that under inversion there is no sign change, gerade 
orbitals are symmetric for i, Figure 3 

o orbitals with odd parity are labelled “u” ungerade which is German for 
“odd.  This means that under inversion there is a sign change, ungerade 
orbitals are antisymmetric for i. 

 
Figure 3 Ci character table 

o the electronic dipole moment has ungerade parity (as it depends on x,y and 
z which are ungerade), sometimes we just say the dipole moment is an odd 
function 

o this means that for the transition dipole integrand to contain the totally 

symmetric IR, the direct product  must be ungerade (u).  For 

this to be true one of the initial or final states must be u and the other must 
be g.  That is there must be a change in parity during the excitation. 

• the parity selection rule is often conflated with the “Laporte selection 
rule”, which is an angular momentum selection rule: a transition must 
involve angular momentum change of plus/minus 1, Dl=±1,  
o sAOs have g parity and pAOs have u parity, thus and s->s or a p->p 

transition is forbidden by parity.  Putting this together you can see that a 
transition is only allowed if we have a change in angular momentum 
because that allows a change in parity 

o notice that the parity selection rule still allows a d->s transition, but the 
Laporte selection rule forbids this as this is a change of Dl=2 

o these rules lead to d-d transitions in TM complexes being "forbidden" 
because they involve a d-d transition (no angular momentum change) and 
because they involve a t2g to eg transition and thus involve a g->g transition 
(parity selection rule) 

o clearly transition metals still have d-d transitions, so how are these rules 
“broken”?  We will discuss this later! 

Atomic Electronic States 
• pure electronic transitions within TM complexes or in the solid state depend, 

to a first approximation, on the nature of the dAOs in the isolated cation ie 
where the TM is a “free ion”.   
o this is particularly true for weakly interacting ligands where the metal 

dAOs are not substantially perturbed 
o and also in the solid state, where ionic bonds rather than covalent bonds 

dominate 

Ci E i
Ag 1 1
Au 1 −1

Γ χ f ⊗Γ χi{ }
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o when the ligands are strong field ligands we need to take another 
approach, treated shortly 

o thus to study TM isolated cations or "free ions" in more detail we need to 
go back and consider the orbital characteristics of atoms in more detail, we 
need to know the exact symmetry of initial and final electronic states so 
that we can determine if a transition should occur 

 
this is going to involve some tough quantum mechanics! 
don’t try to understand it all the first time you read it … 
on the first reading soak up the concepts and then come 

back again focusing more on the details 
 
• you are already aware of the different components of the electronic 

wavefunction: 

 
  Equation 7 

o we have the principle quantum number which relates to the radial equation 
o the angular quantum numbers which relate to the angular solutions 
o and the spin quantum number which relates to the spin component 

• for example in labelling the atomic configuration of an atom such as carbon 
we would write: C 1s22s22p2 -> this looks easy. Actually it is not so easy!! 

• we have quietly ignored the fact that there are three 2p AOs 
o p really means l=1 where l is the angular momentum of the orbital (l=0 

called s and l=2 called d and so on) 
o each l has ml=-l, (-l+1) …0… (l-1), l associated with it 
o so pAO has ml=-1, 0, 1 and there are the three different pAOs, each of 

these orbitals has a different symmetry. 
o which of these pAOs do the electrons occupy? 

• we have also ignored the fact that the electrons have spin 
o we know from experiment that s takes on only one value s=1/2 
o the ms values for s are defined similarly to ml; ms=-s, (-s+1) …0… (s-1), s  
o if s=1/2 the possible ms values are (-s)=-1/2 and (-s+1)= (-1/2+1)=s=1/2 
o thus one electron can have spin ms=+1/2 or ms=-1/2, you might be more 

familiar with the a and b terminology! 
o are our two pAO electrons spin paired or do they have parallel spins? 

• it is evident we need a more detailed and accurate description of the states of 
atoms and molecules. 
o for example a single electron p1 electron has 6 possible microstates, it 

can have a value of ml=-1, 0, 1 and each of these can have ms=+1/2, -1/2 
o determining the number of microstates for more than one electron is made 

more difficult because electrons are indistinguishable and some of the 
microstates are identical and we only count the unique states 

o however there is a useful formula when n=2*number of orbitals and ne= 
the number of electrons and nh=number of holes: 

 
  Equation 8 

 
 

ψ el = Rn (r)Yl ,ml
(θ ,φ)ss,ms

(σ )

N = n!
ne!nh!

IMPORTANT
! 

IMPORTANT
! 
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o thus for p2 there are n=6, ne=2  and nh=4, giving 15 microstates 

 

o these microstates do not all have the same energy, this is because the e-e 
interactions are different, e-e repulsion changes, e-e exchange changes, 
and electrons that are parallel have different energies from electrons that 
are spin paired 

In Notes Problem 
• calculate how many microstates the d4 configuration has: 
 
 number of orbitals =  
 number of electrons = 
 number of holes = 
 work out the equation … 
 
 
• the situation is significantly more complex for five dAOs, the larger number 

of electrons means a much larger number of microstates, Table 1 

dn d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 
microstates 10 45 120 210 252 210 120 45 10 1 

Table 1 microstates for different dAO configurations 

 

Quantum Mechanics of Angular Momentum 
• it is clear we need a better description of the atomic states, and that this will 

involve energy levels or states with a large number of degeneracies 
• in this section I will only give a rough outline, as you don’t yet have 

sufficient quantum mechanics to treat this topic properly. 
• you are directed to relevant textbooks for a full explanation, for example see 

Chapter 4: Angular Momentum in Atkin’s “Molecular Quantum Mechanics” 
• you have meet angular momentum in the context solving the Schrödinger 

equation for the Hydrogen atom 
o different people use different notations I am going to use l for the orbital 

angular momentum vector, just the way a position vector can be 
defined r= xi+ yj+zk where i, j and k are the orthogonal Cartesian unit 
vectors, linear momentum can also be defined p= pxi+ pyj+pzk, and also 
angular momentum l= lxi+ lyj+lzk 

o the length of a vector can be described as r2=x2+y2+z2, and the length of 
the angular momentum vector can be defined l2=lx

2+ly
2+lz

2 
o when using angular momentum we focus on the following eigenvalue 

equations for l2 and lz, the eigenfunctions are the spherical harmonics 
Y(q,j) and the eigenvalues are the quantum numbers l and ml: 

 
  Equation 9 

o notice that for each l value we will have 2l+1 ml states 

 
N = 6!

2!4!
= 6 i 5 i 4 i 3 i 2 i1
(2 i1)(4 i 3 i 2 i1)

= 6 i 5
2

= 15

 

l2Y (θ ,φ) = l(l +1)!2Y (θ ,φ) l = 0,1,2…
lzY (θ ,φ) = ml!Y (θ ,φ) ml = −l,(−l +1)…(l −1),l
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• the length and z-component of the angular momenta commute [l2, lz], 
however the length and the x- or y- components do not commute. 
o we focus on l2 and lz because they both commute with the Hamiltonian  
o any operators that commute have the same eigenfunctions and so this is an 

easy way to determine the eigenfunctions for H 
o operators that commute with H are the only observable operators, and thus 

these are the operators that are important in spectroscopy 
• instead of writing the eigenfunctions in the spherical harmonic notation it is 

common to represent the eigenfunctions in a Dirac notation, emphasising the 
quantum numbers for each wavefunction: 

 
  Equation 10 

In Notes Problem 
• if l=2 how many states are there and what are the ml values? 
 
 
 
 
 
• the orbital angular momentum functions l2 and lz are particular cases of the 

general class of angular momentum operators, this class all have similar 
equations, if we assume a general angular momentum vector k then: 

 
  Equation 11 

o for each k value we will have 2k+1 mk states 
• it may not have been explicitly stated before, but “spin” is a special form of 

an angular momentum operator, the spin operators are s2 and sz, the 
eigenfunctions are |s,ms> and the eigenvalues are quantum numbers s and ms  

 

  Equation 12 

o the quantum number s is called the spin of the particle, mathematically 
there is no restriction on s!  However, experiment shows that all electrons 
have a single value of s=1/2.  Protons and neutrons also have s=1/2, pions 
have s=0 and photons have s=1. 

o the electron spin eigenfunctions for electrons are defined as a and b 

  Equation 13 

 
 
 

 

l2 l,ml = l(l +1)!2 l,ml l = 0,1,2…

lz l,ml = ml! l,ml ml = −l,(−l +1)…(l −1),l

 

k2 k,mk = k(k +1)!2 k,mk k = 0,1,2…

kz k,mk = mk! k,mk mk = −k,(−k +1)…(k −1),k

 

s2 s,ms = s(s +1)!2 s,ms s = 0, 1
2
,1, 3
2
,2…

sz s,ms = ms!s s,ms ms = −s,(−s +1)…(s −1),s

 

s = 1
2

and ms = −s!s = − 1
2
, 1
2

s,ms = 1
2
, 1
2

=α => Szα = 1
2
"α s,ms = 1

2
,− 1
2

= β => Szβ = − 1
2
"β

IMPORTANT
! 
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• getting back to our multi-electron system, we can identify individual angular 
momentum vectors li and spin si for each electron.  The individual momenta 
commute with each other and so for a multi-electron system we can write a 
single wavefunction dependent on the individual quantum numbers: 

   Equation 14 

• however in a molecule the individual angular momenta are not useful for us, 
we are interested in the total angular momenta vectors: total orbital 
angular momentum (L) and total spin (S)  

 

  Equation 15 

o these have an associated component in the z-direction Lz and Sz and an 
associated magnitude for the total orbital angular momentum (L2) or total 
spin magnitude (S2) 

o the total angular momentum operators are within the class of angular 
momentum operators and so fit the same pattern for satisfying the 
eigenvalue equations: 

 

  Equation 16 

o the eigenfunctions depend on the total quantum numbers and 
parametrically on the individual electron quantum numbers: 

   Equation 17 

• the associated quantum numbers can be a bit difficult to work out!  The best 
technique is to start by working out the mL and mS values and from those 
work out the possible L and S quantum numbers.  Please see L7 and the 
exam preparation problems from L7 for more details. 
o for example if we had 2 electrons: 

 
Equation 18 

o working out the coupling of more electrons is difficult and is usually 
carried out by coupling 2 electrons and then coupling the resulting 
momenta/spin with the 3rd electron and so on; coupling is worked out 
pairwise.  Coupling of more than 2 electrons is beyond this course! 

 
 
 

 l1,ms1,l2,ms2,!

L̂ = l̂i
i
∑ Ŝ = ŝi

i
∑

Lz = lzi Sz = szi
i
∑

i
∑

 

L2Φ = L(L +1)!2Φ L = 0,1,2…
LzΦ = ML!Φ ML = −L,(−L +1)…(L −1),L

S2Φ = S(S +1)!2Φ S = 0,1,2…
SzΦ = MS!Φ MS = −S,(−S +1)…(S −1),S

 L,ML;l1,l2!

 

L̂ = l̂1 + l̂2 Ŝ = ŝ1 + ŝ2

ML = ml1 +ml2 MS = ms1 +ms2

L = l1 + l2,(l1 + l2 −1),(l1 + l2 − 2),! (l1 − l2 ) S = s1 + s2,(s1 + s2 −1),(s1 + s2 − 2),! (s1 − s2 )
number of states= (2l1 +1)(2l2 +1) number of states= (2s1 +1)(2s2 +1)
L,ML;l1,l2 S,MS;s1,s2
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• the operators L2 and S2 commute with the Hamiltonian and thus are 
important quantities for spectroscopy and for defining the multi-electron 
wavefunctions or eigenvectors. 
o the allowed values of L and S form the Clebsch-Gordan series 
o we use the quantum numbers (L and S) to define the electronic states of 

multi-electron systems 
o similarly to single electron systems where l=0, 1, 2… are replaced by s, p 

d … we replace the total angular momentum eigenvalues L=0, 1, 2 … by 
S, P, D … with the capital letters indicating a total angular momentum 
rather than an individual orbital angular momentum 

o spin is not specified directly by S but by the multiplicity=2S+1 
• the eigenfunctions one works with can change depending on which momenta 

are the focus, for example the wavefunction for two particles 
o can be defined by the individual angular momenta:   
o or they can be defined by the total angular momenta:  
o L2

 does not commute with the individual lzi and so these two sets of 
eigenfunctions are different, however it is possible to interconvert them 
where the coefficients are known as the Clebsch-Gordan coefficients 

 
Equation 19 

o think of this as expanding the total (angular momentum) wavefunction in 
terms of the individual (angular momentum) wavefunctions 

• angular momentum is complex and we have just touched on it here, there is 
much more, see specialist texts on quantum mechanics if you are interested! 

Spin Orbit Coupling 
• spin-orbit coupling occurs when the spin and orbital angular momenta 

couple, this can occur via two mechanisms 
o the total angular momenta S and L couple to form J 
o the total coupled angular momentum has equations exactly analogous to 

the total angular momentum and spin momentum operators, Figure 4 

 
Equation 20 

  
Figure 4 L and S (orbital and spin) angular 

momenta coupling.1 

o this type of coupling is called Russell-Saunders coupling or L-S 
coupling, and is appropriate for systems where the electron-electron 
repulsive interaction is larger than the spin-orbit coupling 

 
1 Image from http://en.wikipedia.org/wiki/Angular_momentum_coupling, 25 Feb 2014 

l1ml1 l2ml2

L,ML;l1,l2

LT ,ML;l1,l2 = C(LT ,ML;l1,l2,ml1,ml2 ) l1ml1 l2ml2∑

 

Ĵ = L̂ + Ŝ Jz = Lz + Sz
MJ = MS +ML

J = L + S,(L + S −1)… L − S

J 2Φ = J(J +1)!2Φ J = 0,1,2…
JzΦ = MJ!Φ MJ = −J,(−J +1)…(J −1), J

IMPORTANT
! 
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o spin-orbit coupling is a relativistic effect and thus when atoms get heavy 
(and the inner electrons are moving near the speed of light) relativistic 
effects can dominate electron-electron repulsion. 

o in this case spin-orbit coupling occurs at the individual electron level and 
this type of coupling is called j-j coupling 

 

  Equation 21 

o for most heavy atoms the reality sits somewhere between j-j and L-S 
coupling and calculations are difficult!  For 3d and 4d transition metals we 
can work in the L-S coupling scheme 

o for the heavier elements we need to consider the j-j coupling scheme, this 
is very relevant in your “Lanthanides and Actinides” course. 

Key Points 
• be able to describe some of the many instances in which colour is evident in 

the lab and in “real life” 
• be able to make a connection between a UV-vis experiment and the 

mathematics that describes electronic transitions 
• be able to determine the symmetry of the ground and excited electronic 

states for a simple molecule (like H2O) 
• be able to use the transition dipole moment to determine when a transition 

will occur 
• be able to explain the spin and parity selections rules 
• be able to determine the number of microstates for a given atomic 

configuration 
• know the eigenvalue equations for the general class of angular momentum 

operators, l, s, L, S, j and J 

Self-Study / Tutorial / Exam Preparation Problems 
• no practice problems, spend your time going over the equations covered today 
 

 

ĵi = l̂i + ŝi
ji
2Φ = j( j +1)!2Φ j = 0,1,2…
jziΦ = mj!Φ mj = − j,(− j +1)…( j −1), j

J = ĵi
i
∑


