# **Electronic Selection Rules (II)**

# Term Symbols

now we are finally ready to clearly define our electronic states!

### **IMPORTANT**

- microstates for a particular atomic configuration are grouped into what are called **free ion terms** which are denoted by a **term symbol**  ${}^{2S+1}\{L\}_L$ 
  - o this gives a shorthand for information on the total spin S or actually the multiplicity, the total angular momentum L and the spin-orbit coupling J
  - spin-orbit coupling slightly splits the energy levels of the L states into states of specific J value with 2J+1 degenerate levels corresponding to all the possible M<sub>J</sub> values

#### **IMPORTANT**

- Hund's rules are used to determine the lowest energy ground state
  - o the ground state term always has the *highest multiplicity*, and if two terms share the same multiplicity the one with the *highest value of L* is the ground state term
  - o the terms arising for a subshell containing n electrons are *the same for* those containing n holes, for example d<sup>2</sup> (2 electrons) and d<sup>8</sup> (2 holes) are the same
  - these rules can occasionally fail for excited states, and should not be used to determine the energy ordering of higher level states
- coming back to our p<sup>2</sup> example which has 15 microstates, we determine the atomic states by assessing the maximum L and S values
  - o the largest L must be when both electrons have l=1: L=1+1=2, thus the full set of L values will be 0, 1, 2 giving terms of S P and D
  - o the largest S must be when both electrons have the same spin so max S=1/2+1/2=1 and the full set of S values will be 0 and 1, with the corresponding multiplicities of 1 and 3
  - o you might think that we could then have states of <sup>1</sup>S, <sup>3</sup>S, <sup>1</sup>P, <sup>3</sup>P and <sup>1</sup>D, <sup>3</sup>D
  - o however some of these are forbidden by Hund's rules, and the Pauli principle, the accounting of quantum states can feel very "non-intuitive"
  - o for example a state  ${}^{3}D$  with L=2 and S=1 is impossible, this would require both electrons to be in the  $M_L$ =1 state and both to have  $M_S$ =1/2, ie
    - both electrons would be in the same state!
  - o the p<sup>2</sup> configuration has allowed <sup>3</sup>P, <sup>1</sup>D and <sup>1</sup>S terms, **Figure 1**
- determining the free ion states from the atomic configurations xs<sup>n</sup>(x+1)p<sup>n</sup> is complex!
- the full process is demonstrated in the model answer to the first of the problems at the end of these lecture notes. I also strongly recommend looking at the relevant parts of the course text books
- next the J values are evaluated for each of the terms, thus for the <sup>3</sup>P term L=1 and S=1 leading to J=2, 1,
   0 and the term symbols are <sup>3</sup>P<sub>2</sub>, <sup>3</sup>P<sub>1</sub> and <sup>3</sup>P<sub>0</sub>.

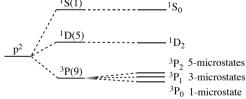



Figure 1 diagram showing microstates for p<sup>2</sup>

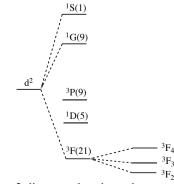
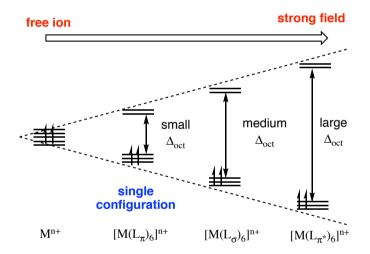
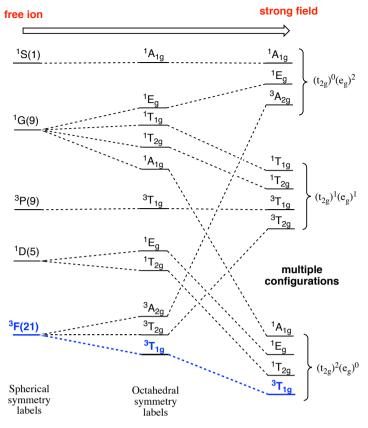




Figure 2 diagram showing microstates for d<sup>2</sup>

- o the  ${}^{3}P_{2}$  term will then be 5 fold degenerate with M<sub>I</sub>=-2, -1, 0, 1, 2
- o the  ${}^{3}P_{1}$  term has J=1 and is 3 fold degenerate with M<sub>J</sub>=-1, 0, 1
- o the  ${}^{3}P_{0}$  term has J=0 and is a single level with M<sub>J</sub>=0
- o thus the original <sup>3</sup>P term is nine fold degenerate and split slightly into a pattern of 5, 3 and 1
- the dAOs have a very large number of microstates
  - o for example for d<sup>2</sup> there are 45 microstates which are divided into the terms shown in **Figure 2**. The number of degenerate states is given in brackets, and the J terms have only been given for the lowest energy state.

#### Term Symbols in an Octahedral Field


- we have now explored how to define the electronic state for an isolated metal ion or a metal ion in a weak field where the atomic states are only slightly distorted, in this case the **atomic** dAOs form the best basis
- when a transition metal is coordinated by ligands the symmetry is reduced and the ligands substantially distort the local TM environment, there are significant changes, such as the familiar splitting into t<sub>2g</sub> and e<sub>g</sub> levels, in this case the **molecular** MOs form the best basis
- this is not an on/off phenomenon, but a graduated scale determined by the ligands and the action of the spectrochemical series, **Figure 3**



OLD way (simplified but useful for those who don't know more)

**Figure 3** diagram showing the effects of an increasing ligand field strength on *orbital energies* for a single (d²) configuration

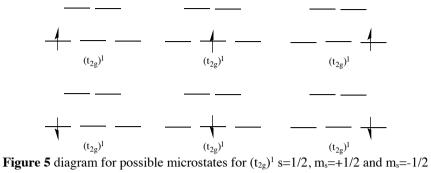
- however, we now know that we need to consider more than a single configuration for "d²", Figure 4
- under an octahedral field the lower symmetry leads to a lifting of degeneracies of the spherical atom and the term symbols become: S=>A<sub>1g</sub>, P=>T<sub>1g</sub>, D=>E<sub>g</sub>+T<sub>2g</sub>, F=>A<sub>2g</sub>+T<sub>1g</sub>+T<sub>2g</sub>, G=>A<sub>1g</sub>+E<sub>1g</sub>+T<sub>1g</sub>+T<sub>2g</sub>
- note that all the term symbols reduce to gerade symmetries, multiplicities remain unchanged
- the new pattern of electronic states and term symbols for a set of strong field ligands is very different from that for the atomic states!



NEW way (correct but complicated!!)

**Figure 4** diagram showing the effects of an increasing ligand field strength on (d<sup>2</sup>) configurations

## Term Symbols in Strong Field Limit


- now we will determine the term symbols and possible microstates of an octahedral molecule at the limit of strong field ligands, ie the symmetry labels on the RHS of Figure 4
- **Table 1** shows all the possible term symbols and microstate degeneracy for the varying strong field TM-complex dAO dominated MOs.

| config       | micro   | Term symbols                                         | config    | micro   | Term symbols                                |
|--------------|---------|------------------------------------------------------|-----------|---------|---------------------------------------------|
|              | -states |                                                      |           | -states |                                             |
| $(t_{2g})^1$ | 6       | $^{2}\mathrm{T}_{2\mathrm{g}}$                       | $(e_g)^1$ | 4       | $^{2}\mathrm{E_{g}}$                        |
| $(t_{2g})^2$ | 15      | ${}^{1}A_{1g}+{}^{1}E_{g}+{}^{3}T_{1g}+{}^{1}T_{2g}$ | $(e_g)^2$ | 6       | ${}^{1}A_{1g} + {}^{3}A_{2g} + {}^{1}E_{g}$ |
| $(t_{2g})^3$ | 20      | ${}^{4}A_{2g}+{}^{2}E_{g}+{}^{2}T_{1g}+{}^{2}T_{2g}$ | $(e_g)^3$ | 4       | $^{2}\mathrm{E_{g}}$                        |
| $(t_{2g})^4$ | 15      | ${}^{1}A_{1g}+{}^{1}E_{g}+{}^{3}T_{1g}+{}^{1}T_{2g}$ | $(e_g)^4$ | 1       | $^{1}A_{1g}$                                |
| $(t_{2g})^5$ | 6       | $^{2}\mathrm{T}_{2\mathrm{g}}$                       |           |         |                                             |
| $(t_{2g})^6$ | 1       | $^{1}A_{1g}$                                         |           |         |                                             |

Table 1 Terms associated with dAO configurations

- now we will work through these showing how all the term symbols are derived
- we know in the octahedral environment the dAO dominated MOs split into a t<sub>2g</sub> and e<sub>g</sub> set, we need to consider the potential occupation patterns for filling up these levels

- for  $(t_{2\sigma})^1$  there are six microstates (the single electron can occupy any of the  $3t_{2g}$  orbitals with spin up or spin down, **Figure 5**.
  - o the term symbol is easily established as the symmetry of the state is just the symmetry of the occupied orbital involved  ${}^{2}T_{2g}$



- for  $(e_p)^1$  the term symbol is also easily established as the symmetry of the  $(e_{\sigma})^1$  state, this is  ${}^2E_{\sigma}$
- term symbols for the completely full levels  $(t_{2g})^6$  and  $(e_g)^4$  must be  $^1A_{1\sigma}$
- for  $(e_g)^3$  and  $(t_{2g})^5$  we use the hole formalism, which states that the same number of electrons or holes have the same term symbols. Thus the  $(t_{2g})^1$ and  $(t_{2g})^5$  configurations will have the same core term symbols, as will  $(e_g)^1$ and  $(e_g)^3$ .  $(e_g)^3$  is therefor  $E_g$  and  $(t_{2g})^5$  is  $T_{2g}$ 
  - o note that I have not explicitly assigned the multiplicity as this can be complex for 5 and 3 electrons respectively, but the multiplicity is given for the term symbols in Table 1
- in general for other configurations we can use the same method employed earlier for water and take the direct product of the orbital symmetries for unpaired electrons:
  - o for  $(t_{2g})^2$  (which is the same as that for  $(t_{2g})^4$ ) we form the direct product of the electrons not paired in a MO:

$$(t_{2g})^2 = T_{2g} \otimes T_{2g} = A_{1g} + E_g + T_{1g} + T_{2g}$$

o note that I have again not assigned the multiplicity using the direct product method, as this can be complex, more details can be found in the recommended text

#### In Notes Activity

determine the term symbols for the  $(e_{\sigma})^2$  configuration, draw out the 6 possible microstates for this configuration and identify the multiplicity of each state

Figure 6 diagram of possible microstates for (e<sub>2g</sub>)<sup>2</sup>

• the direct product method does not work all the time, for example the  $(e_g)^3$  and  $(t_{2g})^3$  configurations cannot be determined this way

$$(e_g)^3 = E_g \otimes E_g \otimes E_g = (A_{1g} + A_{2g} + E_g) \otimes E_g = \times$$
  
 $(t_{2g})^3 = T_{2g} \otimes T_{2g} \otimes T_{2g} = (A_{1g} + E_g + T_{1g} + T_{2g}) \otimes T_{2g} = \times$ 

- o however, we already know the  $(e_g)^3$  configuration from the hole formalism
- $\circ$  the terms for  $(t_{2g})^3$  are complex and I will not cover it here, more details can be found in the recommended text
- if we want to connect the strong field ligand configurations with those of the free ion we need to remember that the d<sup>2</sup> configuration includes a number of different strong field configurations:  $(t_{2g})^2$  and  $(t_{2g})^1(e_g)^1$  and  $(e_g)^2$ , **Figure 7**

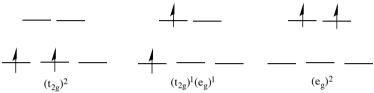
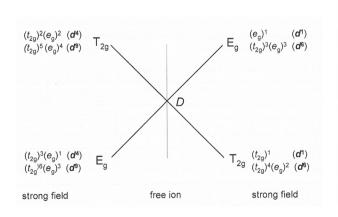




Figure 7 diagram showing contributing configurations for d<sup>2</sup>

 these combinations of irreducible representations or terms can then be matched to the free ion terms as shown in the Error! Reference source not found.

# **Orgel Diagrams**

- we now have a description of the symmetry (term symbols) of the electronic wavefunction for the free-ion and octahedral environments
- we can group relevant information regarding term symbols and the effects of weak through to strong field ligands for various configurations, Figure 8 these are called **Orgel diagrams**
  - this also means we don't need to remember the data in Table 1 as we can read it off the diagram



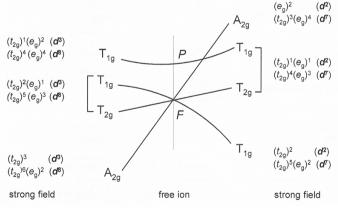



Figure 8 Orgel diagrams.1

- Orgel diagrams are used to reference the ground state of (*high spin*) transition metal complexes
  - there is one diagram for D free-ion ground states and one for F free-ion ground states

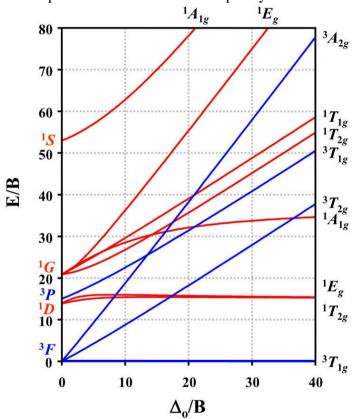
<sup>&</sup>lt;sup>1</sup> Figure 13.1 and 13.3 from Group Theory for Chemists by K. Molloy, 2<sup>nd</sup> edition, 2011, Woodhead Publishing Limited, Cambridge.

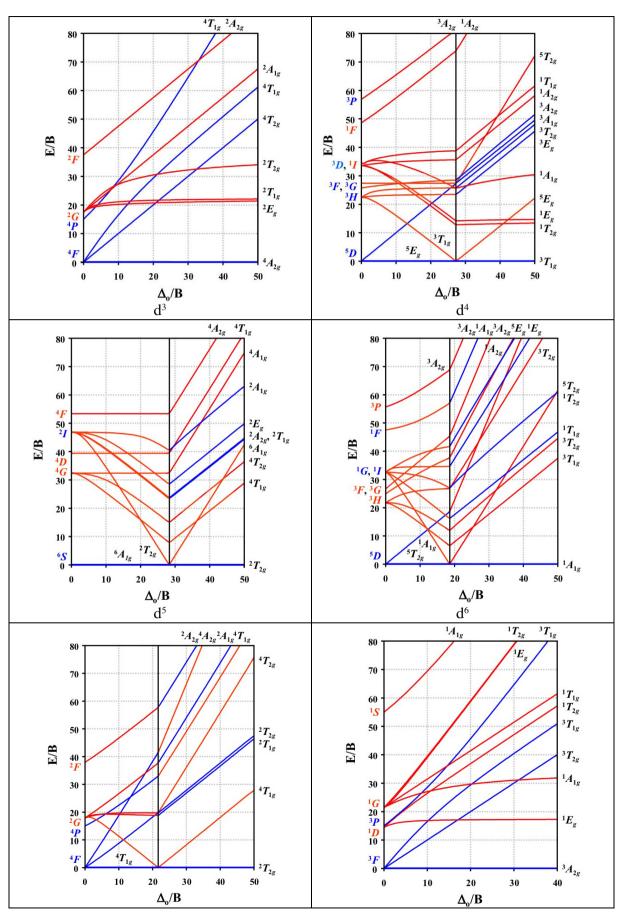
## **IMPORTANT**

- o you are not expected to be able to generate such diagrams, but you should be able to interpret and use these diagrams.
- we can use Orgel diagrams to determine the ground state symmetry of a TM complex and also to predict possible transitions
- o there is a clear reflection relationship between states with n electrons and those with n holes, eg d<sup>2</sup> and d<sup>8</sup>, the stability of the states is reversed
- o the curvature of the two  $T_{\rm lg}$  curves is a result of the **non-crossing rule**, where terms of the same symmetry and multiplicity are not permitted to cross, they mix and appear to "repel" each other.
- o tetrahedral states follow very similar patterns but discussing these is outside the scope of this course

# Tanabe-Sugano Diagrams

- Orgel diagrams are simplified versions of **Tanabe-Sugano diagrams** which are used to interpret and predict the spectra of TM complexes
  - o the Tanabe-Sugano diagram for a d<sup>2</sup> complex is shown in Figure 9, the blue lines represent states of the same multiplicity as the ground state and the red lines represent states of other multiplicity



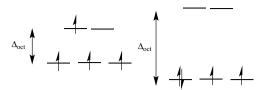


Figure 9 Tanabe-Sugano diagram for d<sup>2</sup>.<sup>2</sup>

- $\circ$  the lowest energy state is plotted horizontally and the vertical distance gives a measure of the energy of the excited states above the ground state (note that the ground state  ${}^{3}T_{1g}$  is curved in the Orgel diagram but linear in the Tanabe-Sugano diagram)
- o the axes are in units of B or the **Racah parameter** which and represents the extent of repulsion between electrons in dAOs. The vertical axis is energy E/B and the horizontal axis is  $\Delta_{oct}/B$

Hunt / Lecture 7

<sup>&</sup>lt;sup>2</sup> Figure 11.5 from Inorganic Chemistry by G. Miessler and D. Tar, 4<sup>th</sup> edition, 2011, Prentice Hall, Boston

• a full set of diagrams shown in **Figure 10**, no distinction is made between lines for different spin states and it is assumed that all states are gerade.




Hunt / Lecture 7

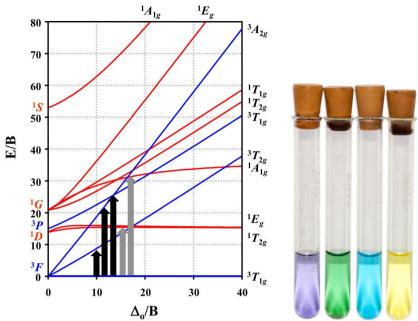
 $d^7$   $d^8$ 

Figure 10 Tanabe-Sugano diagrams for d<sup>2</sup>, d<sup>3</sup>, d<sup>4</sup>, d<sup>6</sup>, d<sup>7</sup> and d<sup>8</sup>

some complexes can undergo a high spin to low spin transition as Δ<sub>o</sub> increases, Figure 11.
 This changes the ground state configuration, at the change over point there is a discontinuity in the Tanabe-



**Figure 11** Spin change over as  $\Delta_o$  becomes large


Sugano diagram, this is shown by a vertical line at the relevant  $\Delta_0$ .

- o for example the Tanabe-Sugano diagram for  $d^5$  involves only spin forbidden transitions, the ground state is  ${}^6A_{1g}$ , until  $\Delta_{oct}$  is sufficiently large that spin pairing occurs and then the ground state is  ${}^2T_{2g}$ .
- there is no Tanabe-Sugano diagram for d<sup>1</sup> as this configuration has only a single free ion electronic state <sup>2</sup>D which is splits into the <sup>2</sup>T<sub>2g</sub> and <sup>2</sup>E<sub>g</sub> states in the strong field limit, only a single excitation is possible.
- d<sup>9</sup> is similar but with the reverse stability of states, ie <sup>2</sup>E<sub>g</sub> below <sup>2</sup>T<sub>2g</sub> for d<sup>9</sup> complexes there is often there is a shoulder in the spectrum due to a Jahn-Teller distortion (partially occupied degenerate state) which acts to remove the degeneracy and stabilise the molecule overall.
- there is no Tanabe-Sugano diagram for d<sup>10</sup> because the d-orbitals are all occupied and there can be no transition, the ground state must be <sup>1</sup>A<sub>1g</sub>

# Predicting Spectra: An Example

- K<sub>3</sub>[VF<sub>6</sub>] is a bright green solid, assume green light has a wavelength interval of 500-565 nm. What is the ground state term symbol for K<sub>3</sub>[VF<sub>6</sub>]? How many transitions can be expected for the V ion? What are the possible transitions? Sketch a possible UV-vis spectrum. What is the electronic configuration for each state?
- What is the ground state term symbol for  $K_3[VF_6]$ ?
  - o V is in group 5 so  $V^0 = > (d^5)$ , F is an anionic ligand, and we have a  $[VF_6]^{3-}$  complex, at the V we have 5-6+3=+2 d electrons, ie we have V  $d^2$
  - o thus V is in the +3 oxidation state (not so relevant here)
  - o this is a standard octahedral complex and so the d manifold is split into  $t_{2g}$  and  $e_g$  and the electrons will be unpaired and the configuration is  $(t_{2g})^2$ .
  - o using the Tanabe-Sugano diagram for  $d^2$  (**Figure 12b**) the ground state term symbol of the *free ion* is  ${}^3F$  and in the *strong ligand field* is  ${}^3T_{1g}$
- How many transitions can be expected for the V ion?
  - o possible spin allowed transitions are  ${}^3T_{1g}(F) \rightarrow {}^3T_{2g}$ ,  ${}^3T_{1g}(F) \rightarrow {}^3A_{2g}$  and  ${}^3T_{1g}(F) \rightarrow {}^3T_{2g}(P)$
  - o the order of these transitions will depend on the ligand field, for a stronger field ligand the transition order will be  ${}^{3}T_{2g}$ ,  ${}^{3}T_{2g}(P)$  and  ${}^{3}A_{2g}$ , in a weaker field ligand the transition order will be to  ${}^{3}T_{2g}$ ,  ${}^{3}A_{2g}$  and  ${}^{3}T_{2g}(P)$
  - F is a weak field ligand, and we guess a  $\Delta_o/B \approx 12$  which will produce a lower energy transition from  ${}^3T_{1g}(F) \rightarrow$  to  ${}^3T_{2g}$  and a higher energy transition to  ${}^3A_{2g}$  and  ${}^3T_{2g}(P)$  which may appear as a broad peak due to overlap.
  - o it is possible that there will be weak triplet to singlet transitions to a  ${}^{1}D$  (free ion) state or set of  ${}^{1}E_{g}$  and  ${}^{1}T_{2g}$  states ( $O_{h}$ )

o other weak spin forbidden transitions are possible, the highest energy ones will most likely be in the UV part of the spectrum



**Figure 12** (a)diagram indicating possible transitions, (b) solutions of Vanadium in different oxidation states, green is vanadium in a +3 oxidation state.<sup>3</sup>

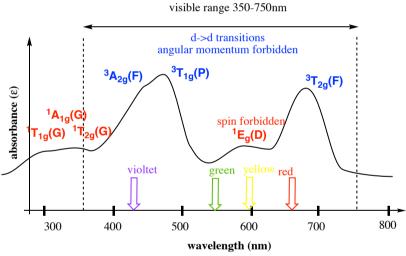



Figure 13 Sketch of a potential UV-vis spectrum of K<sub>3</sub>[VF<sub>6</sub>]

- Sketch a possible UV-vis spectrum.
  - we are told the solid compound is green, therefore the absorbance must be in all other areas of the spectrum, green light has a wavelength interval of 500-565 nm
  - we expect two strong transitions either side of the green region, in the red and blue/violet, there will be a strong overlap of peaks in the higher energy region as the <sup>3</sup>A<sub>2g</sub> and <sup>3</sup>T<sub>1g</sub> transitions are close in energy
  - there will be weaker absorbances due to the spin forbidden transitions, transitions will be hidden under the more intense peaks, and occur in the high energy region (ultra-violet)

<sup>&</sup>lt;sup>3</sup> picture fron <a href="https://commons.wikimedia.org/wiki/File:Vanadiumoxidationstates.jpg">https://commons.wikimedia.org/wiki/File:Vanadiumoxidationstates.jpg</a> by Steffen Kristensen image in the public domain

- o vanadium is well known for the range of colours it can produce based on changes in oxidation state, **Figure 12b** is of the aqua complexes lilac  $[V(H_2O)_6]^{2+}$ , green  $[V(H_2O)_6]^{3+}$ , blue  $[V(H_2O)_5]^{2+}$  and yellow  $[V(H_2O)_5]^{3+}$ .
- you are expected to be able to produce or interpret a sketch as shown in
   Figure 13 and to be able to explain the concepts behind its generation.
- What is the electronic configuration for each state?
  - o we can associate the transitions identified with specific electronic configurations, the ground state is  $(t_{2g})^2$  with multiplicity of 3, using the information from **Table 1** the ground state is easily identified as  ${}^3T_{1g}$

$$(t_{2g})^2 = T_{2g} \otimes T_{2g} = {}^{1}A_{1g} + {}^{1}E_g + {}^{3}T_{1g} + {}^{1}T_{2g}$$

o possible excitations are  $(t_{2g})^1(e_g)^1$  and  $(t_{2g})^0(e_g)^1$  leading to

$$(t_{2g})^{1}(e_{g})^{1} = T_{2g} \otimes E_{g} = {}^{3}T_{1g} + {}^{3}T_{2g}$$
$$(t_{2g})^{0}(e_{g})^{2} = E_{g} \otimes E_{g} = {}^{1}A_{1g} + {}^{3}A_{2g} + {}^{1}E_{2g}$$

- $\circ$  thus the transitions to the  ${}^3T_{2g}$  and  ${}^3T_{2g}$  states are single excitations while the transition to the  ${}^3A_{2g}$  state is a double excitation
- o you might want to ask how can a single excitation ( ${}^{3}T_{2g}(P)$ ) take more energy than a double excitation ( ${}^{3}A_{2g}$ )? This is because we are near the free ion end of the field rather than at the stronger octahedral field end.

# **Key Points**

**IMPORTANT** 

- be able to identify term symbols and use Hund's rules to determine the symmetry of the lowest energy (ground) state
- be able to derive the free ion states for 1, 2 and 3 electrons, know what the general notation represents, be able to describe all the terms and be able to identify when 2 states are identical.
- be able predict the term symbols for simple strong field configurations (you will be given those of the  $(t_{2g})^3$  if you need them).
- be able to explain the features of Orgel and Tanabe-Sugano diagrams
- be able to predict the ground states and the spectra of TM-complexes

## Self-Study / Tutorial / Exam Preparation Problems

- Identify the possible term symbols that arise from the configuration 2p<sup>1</sup>3p<sup>1</sup>
- Determine the full ground state term symbol for a d<sup>3</sup> free ion configuration (using Hund's rules and determining possible J values), what is the degeneracy of this state?
- How many transitions should be expected for each of the d¹ d8 configurations?
- Why is  $[Ti(H_2O)_6]^{3+}$  violet? (**Figure 14**)

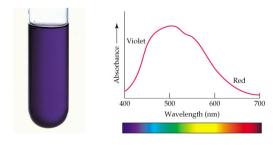



Figure 14 solution and spectrum of  $[Ti(H_2O)_6]^{3+4}$ 

 $<sup>^4</sup>$  downloaded from http://wps.prenhall.com/wps/media/objects/4680/4793024/ch20\_10.htm, 23 Feb 2015