Self-Study / Tutorial / Exam Preparation Problems

- Identify the possible term symbols that can arise from the configuration 2p¹3p¹
 - o first identify the possible L and S values:
 - o we know $l_1=1$, $l_2=1$ thus max $L=l_1+l_2=2$ thus possible L=2, 1, 0, we have potential D, P, S terms
 - \circ we know $s_1=1/2$, $s_2=1/2$ thus max $S=s_1+s_2=1$ thus possible S=1,0, we have potential multiplicity of 3 and 1
 - o thus we have potential ³D, ¹D, ³P, ¹P, ³S, ¹S terms
 - o possible values of J are J=L+S, L+S-1, ... |L-S|

L, S	L+S, L+S-1, L-S	J	term symbol
L=2 S=1	2+1, 2+1-1, 2-1	3, 2, 1	${}^{3}D_{3}, {}^{3}D_{2}, {}^{3}D_{1}$
L=2 S=0	2+0, 2+0-1, 2-0	2	$^{1}\mathrm{D}_{2}$
L=1 S=1	1+1, 1+1-1, 1-1	2, 1, 0	${}^{3}P_{2}, {}^{3}P_{1}, {}^{3}P_{0}$
L=1 S=0	1+0, 1+0-1, 1-0	1	${}^{1}\mathbf{P}_{1}$
L=0 S=1	0+1, 0+1-1, 0-1	1,0	${}^{3}S_{1}, {}^{3}S_{0}$
L=0 S=0	0+0, 0+0-1, 0-0	0	${}^{1}S_{0}$

- o thus the complete list of potential term symbols is 3D_3 , 3D_2 , 3D_1 , 1D_2 , 3P_2 , 3P_1 , 3P_0 , 1P_1 , 3S_1 , 3S_0 and 1S_0
- o all of these terms are allowed because the pAOs are different, however in the notes we considered the equivalent of 2p² or 3p², in this case some of the terms are not allowed due to Hund's rules or some non-intuitive quantum mechanical accounting.
- o the first thing to note is that the 3D terms are not allowed, this requires L= $l_1+l_2=2$ and S= $s_1+s_2=1$ with the associated $M_L=-2$, -1, 0, 1, 2 and $M_S=-1$, 0, 1 values available. For $M_L=2$ this requires $m_{l(1)}=+1$ and $m_{l(2)}=+1$ ie both electrons in the same orbital and since $M_S=1$ requires $m_{s(1)}=+1/2$ and $m_{s(2)}=+1/2$ both electrons cannot have the same quantum numbers (Pauli principle) and this entire set of microstates is not allowed.
- o however assessing the remaining term symbols is more complex and the best way to proceed is via a table of M_L and M_S values. We will consider ¹P. We will use a notation for electrons (1, 2) represented by $(m_{l(1)}, \overline{m}_{l(2)})$ m_l values with a bar representing spin of -1/2 (and no bar a spin of +1/2)

M_L, M_S	+1	0	-1
+2	Х	$(1,\bar{1})$	Х
+1	(1,0)	$(1,\bar{0})(\bar{1},0)$	$(\overline{1},\overline{0})$
0	(1,-1)	$(1,-\overline{1})(\overline{1},-1)$	$(\overline{1}, \overline{-1})$
U	X	$(0,\bar{0})$	X
-1	(-1,0)	$(-1,\overline{0})$ $(-\overline{1},0)$	$(-\bar{1},\bar{0})$
-2	X	$(-1, -\bar{1})$	X

- o note that the Pauli principle applies to the M_L =+2 and -2 configurations with the same spin on both electrons (M_S =+1 or -1), denoted with an X. The same is true for M_L =0 if $m_{l(1)}$ =0 and $m_{l(2)}$ =0, but not the case if $m_{l(1)}$ =+1 and $m_{l(2)}$ =-1.
- o now one analyses these microstates to extract the relevant term symbols

- o the microstate $(1,\bar{1})$ must belong to L=2, S=0 since $m_{l(1)}=1$ and $m_{l(2)}=1$ and identifies it as the ${}^{1}D$ term. There must be M_{L} values =-2, -1 ,0 ,1 ,2 and so we can cross out one each of the microstates on each of these rows. It doesn't matter which ones we eliminate as this is only a book keeping exercise.
- looking at the next row there is a microstate (1,0) in $M_L=1$ and $M_S=1$, this belongs to L=1, S=1 since $m_{l(1)}=1$ and $m_{l(2)}=0$ and identifies it as the 3P term. L=1 has $M_L=-1,0,1$ and S=1 has $M_S=-1,0,1$ so we eliminate one microstate from each of these boxes in the table, removing 9 microstates.
- o only one microstate remains, $(0, \bar{0})$ in $M_L=0$ and $M_S=0$, this belongs to L=0, S=0 and identifies the ¹S term.
- o thus of the complete set of potential term symbols is 3D_3 , 3D_2 , 3D_1 , 1D_2 , 3P_2 , 3P_1 , 3P_0 , 1P_1 , 3S_1 , 3S_0 and 1S_0 the p² configuration allows only 1D_2 , 3P_2 , 3P_1 , 3P_0 and 1S_0 .
- Determine the full ground state term symbol for a d³ free ion configuration (using Hund's rules and determining possible J values), what is the degeneracy of this state?
 - o Hund's rules state that the ground state has the highest multiplicity
 - o therefor all the electrons will be unpaired and S=3/2 thus multiplicity=2(3/2)+1=4
 - o for dAOs l=2 thus m_i=-2, -1, 0, 1, 2 and the maximum (summed) M_L=2+1+0=3 (since e's cannot have the same quantum numbers each one must have a different m_l given the l=2 for all the electrons)
 - o if the maximum $M_L=3$ then the maximum L=3 this has the term symbol F
 - o the J values have a maximum J=L+S, therefore the max J value is J=3+3/2=6/2+3/2=9/2
 - o then J values vary as (L+S), (L+S-1)...|L-S| so J=9/2, 7/2, 5/2 and 3/2 (since L-S=3/2).
 - each J has degeneracy of 2J+1 so J=9/2 has 10 M_J values, J=7/2 has 8 M_J values, J=5/2 has 6 M_J values, J=3/2 has 4 M_J values giving a a total degeneracy of 10+8+6+4=28
 - o thus the lowest energy d^3 state has term symbol 4F and this level has 4 sublevels ${}^4F_{9/2}(10)$, ${}^4F_{7/2}(8)$, ${}^4F_{5/2}(6)$ and ${}^4F_{3/2}(4)$, where the degeneracy of each level is given in brackets
- How many transitions should be expected for each of the d¹ to d8 configurations?
 - o using the Orgel diagrams we should expect a single transition for all d¹, d⁴, d⁶ and d⁹ complexes and three transitions for all d², d³, d⁷ and d⁸ complexes
 - high spin d⁵ complexes are a special case as any transitions will require a spin change, thus no transitions are expected and d⁵ complexes tend to be very weakly coloured.
- Why is $[Ti(H_2O)_6]^{3+}$ violet?
 - Ti is group 4 d⁴, H₂O is a neutral ligand while the charge removes 3e this
 is a Ti d¹ complex.
 - \circ there is no Tanabe-Sugano diagram for d¹ as this configuration has only a single free ion electronic state ²D which is splits into the ²T_{2g} and ²E_g states in the strong field limit
 - \circ thus the ${}^{2}T_{2g}$ state is the ground state

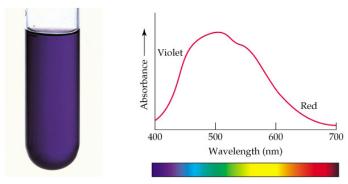


Figure 1 solution and spectrum of [Ti(H₂O)₆]³⁺.1

- o only a single excitation is possible from $(t_{2g})^1$ to $(e_g)^1$ thus the excited state has 2E_g symmetry, this also means the transition is going to reflect very closely the Δ_{oct} .
- o the transition will be angular momentum forbidden (Δl =0) and parity forbidden (as the initial and final states are both g) but as there is colour a a transition must be occurring
- \circ [Ti(H₂O)₆]³⁺ absorbs at \approx 20,300cm₋₁ or \approx 500nm which is in the blue-green region letting the red-violet light through
- we have partially occupied degenerate levels in both the ground and excited state, thus a Jahn-Teller distortion can occur (vibronic coupling), the associated symmetry breaking will lead to a formally forbidden mode gaining intensity and leading to a broad absorbtion.

3

¹ downloaded from http://wps.prenhall.com/wps/media/objects/4680/4793024/ch20_10.htm, 23 Feb 2015