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Pure Electronic Selection Rules 
o now we have all the necessary background to evaluate if an electronic 

transition will occur  
o we know that the totally symmetric A1g must be contained within the 

direct product of the term symbols of the ground state, the excited state 
and the dipole moment 

 
  Equation 1 

o we can predict the ground state term from the Orgel or Tanabe-Sugano 
diagrams, which also identify excited states of the correct multiplicity 

o we know the multiplicity must not change 
o we know that the irreducible representation of the dipole moment in the Oh 

point group, this is T1u, however for TM we also know the ground and 
excited states are always garade 

o but for a transition to occur we know that the parity of the initial and final 
states must change, thus the d-d transitions can never be parity allowed  

 
  Equation 2 

o nevertheless for d-d transitions we also know the rules can be broken since 
TM complexes can be highly coloured, this will be covered shortly 

o complexes don’t need to be octahedral, the same principles apply to lower 
symmetry systems 

o if the centre of inversion is not present then the parity selection rule is no 
longer active and transitions can take on a greater intensity, this is 
particularly true for tetrahedral molecules 

• For example for a d2 complex the ground state is 3T1g symmetry, using the 
Tanabe-Sugano diagram we can expect three transitions to states 3T2g, 3A2g, 
and 3T1g(P) 
o including parity the selection rules show that transitions to the T2g and T1g 

states are forbidden, the direct products will always generate an ungerade 
symmetry. 

 
  Equation 3 

Vibronic Transitions and Vibrational fine 
Structure 
• so far we have focused on the inner part 

of the transition dipole moment integral, 
the electronic component. 

• when light is absorbed by a molecule it 
excites the system from the ground to the 
excited electronic state, however some of 
the light can also vibrationally excite the 
molecule, Figure 1  

• vibronic transitions occur when 
transitions are between different 
electronic and vibrational states. 

ΓA ∈ Γ f ⊗Γµ ⊗Γ i{ }

A1g ∉ Γg
f ⊗T1u ⊗Γg

i{ }

ΓA ∈ Γ f ⊗Γµ ⊗Γ i{ } == T1g ⊗T1u ⊗T2g ∉A1g

 
Figure 1 showing good overlap 

between the vibrational functions. 
diagram from Molecular Quantum 

Mechanics by Atkins and Friedman. 
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                         Equation 4 

o it is assumed the electronic transition dipole moment is essentially 
insensitive to the nuclear displacements allowing separation of the 
components. 

o Sfi is the vibrational overlap integral, in general Sfi ≠ 0 because of the 
displacement of the electronic potential energy surfaces, Figure 1  

o vibrational states on a single electronic potential are orthogonal, however 
vibrational states on different electronic states are not orthogonal 

• Figure 2 shows the resultant vibrational fine structure in a UV-vis spectrum.  
The depicted calculation is determining the vibrational wavenumber 
generating the fine structure.  Also shown is the graphical abstract from a 
paper by J. Houmøller, S. Kaufman, K. Støchkel, L. Tribedi, S. Nielsen and 
J. Weber,  “On the Photoabsorption by Permanganate Ions in Vacuo and the 
Role of a Single Water Molecule. New Experimental Benchmarks for 
Electronic Structure Theory” ChemPhysChem, 2013, Vol 14(6), p1133-
1137, DOI: 10.1002/cphc.201300019. 

 

  
Figure 2 Vibrational fine structure on the electronic absorption band of [MnO4]-.1 

 
• typically the vibrational fine structure is not clearly resolved in a UV-vis 

spectrum, however the vibronic coupling significantly broadens the beaks to 
the order of 1000 cm-1 wide.  (What is the width of your average vibrational 
peak in an IR spectrum?) 

• the intensity of a vibronic transition is proportional to |Sfi|2 (the square of the 
magnitude of Sfi) . |Sfi|2 is called the Franck-Condon factor 
o you have met Franck-Condon factors before particularly in relation to 

photochemistry (Figure 3)  
 

 
1 Image from Inorganic Spectroscopic Methods by Alan Brisdon, (b) abstract image from 
http://onlinelibrary.wiley.com/doi/10.1002/cphc.v14.6/issuetoc (c) KMnO4 solution from 
http://www.sciencebrothers.org/the-chemical-chameleon/, 25 Feb 2015 

µ fi = χ f∫ ψ f∫ µe( )ψ idτ e⎡
⎣

⎤
⎦ χ idτ n

= χ fψ f µe ψ iχ i

= ψ f µe ψ i χ f χ i = µ fieS fi

IMPORTANT
! 



 3 

o both the Franck-Condon factor (FC) and the electronic transition dipole 
moment µfie =V are very important for determining the rate of 
photochemical and electron transfer events, they are key components in 
Fermi's Golden Rule: 

 
  Equation 5 

  
Figure 3 Slides from the photochemistry course of Saif Haque 

 

Breaking the Electronic Selection Rules 
• the colour of transition metal complexes indicates that while transitions may 

be formally forbidden they are still occurring.  What is happening? 
• if vibronic coupling occurs we now need to evaluate if a more complex 

transition dipole moment is zero or non-zero 

 
  Equation 6 

• the process is similar to that covered previously, we need to determine the 
symmetry of all the components and ensure that the integrand contains a 
totally symmetric IR. 

• in the following we will assume that the spin multiplicity is unchanged, ie 
that the transition is spin allowed 

• let us consider a spin-allowed transition for a d1 system 
o the ground electronic state is 2T2g and the ground vibrational state is 

always totally symmetric  
o the dipole moment is T1u 
o the final excited state is a little more complex to evaluate 
o the electronic final state will be 2Eg (ie a t2g to eg transition) 
o there are 3N-6 vibrations possible, for an octahedral complex with 6 

ligands N=7 and so there are 3*7-6=15 possible vibrations these have 
 (using the reduction formula and 

projection operator).  The final vibrational state could have the symmetry 
of any one of these vibrational wavefunctions; any of these vibrations 
could lead to vibronic coupling and a weak transition. 

 
k = 2π

h
FC iV 2

µ fi = χ f∫ ψ f∫ µψ idτ e⎡
⎣

⎤
⎦ χ idτ n

ΓelecΓvib = T2g ⊗ A1g = T2g

Γvib = A1g +Eg +2T1u +T2g +T2u
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Equation 7 

o this leads to: 

 
Equation 8 

o we do not need to evaluate this daunting direct product, because we know 
that the A1g is contained in the product of any two identical IRs, thus we 
need to only look for “matching” IRs on both sides of the direct product 

o we do find this in the T1u and T2u components, thus this transition is 
vibronically allowed. 

o however while we can say that a transition is allowed we cannot currently 
say anything about its intensity! 

• vibronic coupling essentially allows ungerade terms into the final 
wavefunction which then satisfies the requirement that the transition involve 
a g->u symmetry change.  This is often “explained” as the vibrational motion 
of the molecule temporarily removing the centre of symmetry or inversion 
centre. 

In Notes Activity 
o A low spin Co3+ complex has an 1A1g ground state and excited states of 

1T1g and 1T2g.  Does vibronic coupling allow these transitions to occur? 
o Hint: in this case as the final electronic state is changing it is easier to 

work out the direct products in the following sequence, 

 

 
  

Eg( )⊗ A1g ,Eg ,T1u ,T2g ,T2u( )
= Eg( ), A1g + A2g + Eg( ), T1u +T2u( ), T1g +T2g( ), T1u +T2u( ){ }
∈ A1g ,A2g ,Eg ,T1u ,T2u ,T1g ,T2g{ }

Γ i = ΓelecΓvib = T2g Γµ = T1u
Γ f = ΓelecΓvib = A1g ,A2g ,Eg ,T1u ,T2u ,T1g ,T2g{ }
A1g ∈ Γ f ⊗Γµ ⊗Γ i{ }
Γµ ⊗Γ i = T1u ⊗T2g = A2u + Eu +T1u +T2u

A1g ∈ A1g ,A2g ,Eg ,T1u ,T2u ,T1g ,T2g{ }⊗ A2u ,Eu ,T1u ,T2u{ }{ }

A1g ∈ Γ f ⊗Γµ ⊗Γ i{ }
Γ f = Γelec

f

⊗Γvib

f

A1g ∈ Γelec

f

⊗ Γvib

f

⊗Γµ ⊗Γ i( ){ }
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More Vibronic Transitions 
• there are other ways the formal selection rules can be circumvented, the 

physics/mathematics behind this is complex and so I will only just touch on 
the basic concepts behind the breakdown 

• even if the µfi is zero by symmetry there is still the possibility of a transition 
arising 
o when we derived the equations for infrared and Raman spectroscopy we 

expanded the dipole moment in terms of the normal modes.  

 
  Equation 9 

o we said the important term was the first order term 

 
  Equation 10 

o the first time we did this we assumed the electronic and nuclear 
wavefunctions were separable, and we were only considering vibrations 
on a single electronic state 

o however if the nuclear and electronic motion are not separated or we are 
treating an excitation between different electronic states we must use the 
full equation: 

 
Equation 11 

o remember that the differential is a number (the change in dipole evaluated 
around the equilibrium geometry of the mode), thus even though it might 
appear dependent on the nuclear motions (ie dependent on Q) it is brought 
into the electronic integral. 

o you should recognise the zero order term of µfi as the one leading to 
vibronic transitions discussed above 

   Equation 12 

o I will refer in the following to the first order as the linear term, and to the 
second order term as the quadratic term 

first:    second:  

Equation 13 
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• so far we have assumed that the potential energy surface is harmonic, 
however in reality the potential is anharmonic 
o for example the potential can take on the form of a Morse potential 
o if vibrations are large they will extend out of the “harmonic” region of a 

potential 
o anharmonicity can have significant and multiple effects 

An Anharmonic Wavefunction 
• first the nuclear wavefunction or vibrational solutions change slightly, 

however the new solutions can be expanded in terms of original HO 
functions 
o the main effect is to "reduce" the restriction of the Dv±1 selection rule for 

vibrations in the first order term 

   Equation 14 

An Anharmonic Potential 
• next because the potential is not harmonic we cannot assume that the second 

order term is small or zero, these terms can contribute and µfi ≠0  

   Equation 15 

o the electronic component can be non-zero 
o in addition the vibrational selection rule changes and we have the 

requirement that Dn±2, the nuclear component 
o components in the third order and higher term of µfi can also contribute 

allowing for some intensity in formally forbidden transitions 

Non-diagonal Hessian 
• so far we have still assumed that the Hessian is a diagonal matrix, if the 

diagonalisation of the Hessian is not complete and there are a few (small) 
off-diagonal terms left then 
o these contribute to the second order terms, this combining of the 

vibrational (normal modes) Q allows for some intensity in formally 
forbidden transitions 

o again the electronic component can be non-zero 

  Equation 16 

Charge Transfer 
o excitations are not limited to d-d transitions, the lower (occupied) and 

higher energy (vacant) ligand based orbitals are also available 
o ligands with p-donor or p-acceptor orbitals have these in the right region 

for absorption to occur in the visible range 

′χ i = cα χα
α
∑ ′χ f = cβ χβ

β
∑

χ f Qk χ i ≠ 0

cβ χβ
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o these are called LMCT or ligand to metal charge transfer or MLCT or 
metal to ligand charge transfer bands 

o transitions are “angular momentum” and parity allowed and are intense 
o MLCT occur from dAO dominated MOs to ligand dominated MOs, they 

tend to be high energy and on the blue to UV end of the spectrum for 3d 
TMs (<400nm) however for the 4d and 5d TMs they can occur in the 
visible region 

o LMCT require empty metal orbitals and thus occur for high oxidation 
states or for TM to the left of the periodic table, in this process the ligand 
can be formally oxidised and the metal reduced 

o ligand to ligand transitions can also occur, and you have seen these ligands 
referred to as chromophores.  The ligands tend to be p-conjugated or 
aromatic, although SCN, NO2 and NO3 also have strong transitions in the 
visible region. 

Explicit consideration of the vibrational wavefunction (not examined) 
o The total vibrational wavefunction is a product of the ji(Qi) 

 
  Equation 17 

o in the ground state each of these wavefunctions contributes the lowest 
level quanta of vibrational energy to the molecule, n1, n2, n3 …=0 (the 
zero-point energy of the molecule). 

o when the molecule is excited by interaction with light individual modes 
are excited and can have more quanta of energy, for example n1=1 and n2, 
n3 …=0. 

o the ni=0 level is called the fundamental mode, and the ni=1 level is called 
the “first overtone” 

o it is normal to move over to a Dirac notation, where the order within the 
Dirac bra-ket brackets indicates which mode is being considered 

o below is an example using just two vibrational functions 
o we assume that initially all modes are in their ground vibrational state 

(quantum no) n=0, after the interaction one mode (Q1) is excited by a 
single quantum to n=1. 

 

  Equation 18 

o it is easy to see how this can be generalised to more vibrational states 

 
  Equation 19 

o and we can generalise further, to consider the excitation of the vibrational 
wavefunction associated with coordinate Qi which is initial in quantum 
state n=n and is excited to state n=n’ 

 
  Equation 20 

• now consider the excitation of a single mode in isolation 

 
χn = ϕ i (Qi )

i
∏ =ϕν1(Q1)ϕν 2 (Q2 )ϕν 3(Q3)!

χ i =ϕν1(Q1)ϕν 2 (Q2 ) = 0 0[ ]
χ f =ϕν1(Q1)ϕν 2 (Q2 ) = 10[ ]
µ fi = ϕν1(Q1)ϕν 2 (Q2 )∫ µϕν1(Q1)ϕν 2 (Q2 )dQ1dQ2

µ fi = 10 µ 0 0

 µ fi = 10 0! µ 0 0 0!

 µ fi = 0 0! ′ni!0 µ 0 0!ni!0
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o expand out the linear term of the transition dipole moment  
o the initial individual modes Q are in their lowest energy states 
o after the absorption one vibrational mode Q1 has been excited, all others 

remain in their ground state 

   Equation 21 

 

Equation 22 

o after eliminating all the terms that are zero due to the orthogonality of 
vibrational wavefunctions we are left with a single term in Equation 22 

• now we can consider the effect of multiple excitations, in this case both Q1 
and Q2 are excited 

 

Equation 23 

• if there are two excitations the terms reduce to zero and thus multiple 
excitations cannot contribute to the first order term  

• however if we consider the effects of incomplete diagonalisation of the 
hessian, and again consider both Q1 and Q2 are excited, then the result can be 
non-zero, thus multiple excitations can contribute to the second order term! 
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Equation 24 

 

Key Points 
• be able to evaluate if a d-d transition is allowed or forbidden for spin, parity, 

symmetry or angular momenta 
• be able to describe, using appropriate equations and diagrams, vibronic 

transitions, and how they are evidenced in spectra. 
• be able to write equations deriving the Frank-Condon factors, be able to 

discuss how strong vibrational overlap integrals arise, and the link with 
Fermi's Golden Rule 

• be able to determine if a forbidden transition is vibronically allowed via 
coupling of the nuclear and electronic wavefunctions 

• be able to briefly describe other ways in which the selection rules can be 
circumvented 

• be able to explain and illustrate on a MO diagram charge transfer excitations 

Self-Study / Tutorial / Exam Preparation Problems 
• Is a (dxy) HOMO to LUMO transition allowed for [Pt(CN)4]2-?  Will 

vibronic coupling make any difference?   

• What order should be expected for the intensity  of the d-d transitions in  
[MCl6]2-, trans-M(H2O)4Cl2 and cis-M(H2O)4Cl2? 

• In the self-study problems for last lecture it was noted that a Jahn-Teller 
distortion or vibronic coupling within [Ti(H2O)6]3+ broadened the spectrum.  
The formally forbidden transition was (t2g)1(eg)0 → (t2g)0(eg)1 , use the full 
transition dipole moment to show why this transition is vibronically allowed. 
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Γvib = A1g + B1g + B2g + A2u + B2u + 2Eu


