In-Class Problems / Self-study Problems / Test Preparation: Lecture 1

- In-Class P1 What is the principle axis for PCl₅?
 - o the principle axis is the highest Cn axis, ie the axis with the largest n, thus the C_3 axis is the principle axis

Figure 1 PCl₅ rotation axes

In-Class P2 Add the cartesian labels to the relevant axes shown on benzene in Figure 2

Figure 2 benzene rotation axes

- In-Class P3 Determine the point group of NH₃
 - o NH₃ is trigonal pyramidal
 - o symmetry elements for NH₃ are E, C₃, and $3\sigma_v$ planes, Figure 3
 - o use the flow chart
 - 1. is the molecule linear? NO
 - 2. is the molecule T_d or O_h ? NO

 - 3. is there a principle C_n axis? YES (C_3 so n=3)

Figure 3 symmetry elements NH₃

- 4. are there nC₂ perpendicular to the principle axis (ie 3C₂ axes)? NO
- 5. is there a σ_h ? NO
- 6. are there $n\sigma_v$? YES (n=3)
- o therefor the point group of NH_3 is C_{3v}
- Q1 find, draw and label all the rotation axes for the square planar [PtCl₄]²⁻ molecular ion
 - o see Figure 4
 - o C₄ is the prinicple axis so defines the z-axis position
 - o C2 and C4 are coincident, ie in the same place
 - o there are two **types** of C₂ axis, ones that go through bonds and ones that go between bonds, different types of axis are labelled with single/double primes
 - o only the C₂' axes lie along cartesian axes

Figure 4 rotation axes for [PtCl₄]²⁻

- Q2 find, draw and label all the rotation axes and reflection planes for the trigonal planar BH₃ molecule
 - o see Figure 5
 - o diagrams must be clear, you don't need to fit all of the operations on a single diagram
 - o you can put some operations on a "side on" diagram and some on an "in-plane" diagram
 - o mirror planes can also be represented by a "partial" plane as shown

Figure 5 mirror planes and rotation axes for BH₃

- Q3 identify the shape of the following molecules if they have a center of inversion, if the inversion point lies on an atom, identify that atom. (a)CO₂ (b)SiCl₄ (c) SF₆ (d) NH₃ (e) benzene
 - o (a) CO₂ is linear, yes, inversion point lies on the C atom
 - o (b) SiCl₄ is tetrahedral, no inversion point
 - o (c) SF₆ is octahedral, yes, inversion point lies on the S atom
 - o (d) NH₃ is trigonal pyramidal, no inversion point
 - o (e) benzene is hexagonal planar, yes, inversion point lies in the center of the ring
- **Q4** determine the point group of BH₃
 - o BH₃ is trigonal planar
 - o all of the symmetry elements are shown above in **Figure 5**
 - o use the flow chart
 - 1. is the molecule linear? NO
 - 2. are there 2 or more C_n n>2? NO
 - 3. is there a princile C_n axis? YES (C₃ so n=3)
 - 4. are there nC₂ perpendicular to the principle axis (ie 3C₂ axes)? YES
 - 5. is there a σ_h ? YES
 - o therefor the point group of the molecule is D_{3h}
- **Q5** determine the point group of the following molecules (* = more challenging)

a) SH ₂	C_{2v}	
b) CO ₂	$D_{^{\infty}h}$	
c) POCl ₃	C_{3v}	
d) trans- N_2F_2	C_{2h}	
e) CCl ₄	T_d	
f) [PtCl ₄] ²⁻	$\mathrm{D}_{4\mathrm{h}}$	
g) CHFClBr	\mathbf{C}_1	
h) hydrazine N ₂ H ₄	C_2	
i) *cyclohexane (chair)	D_{3d}	https://www.chemtube3d.com/sym-d3dcyclohexane/
j) *cyclohexane (boat)	C_{2v}	https://www.chemtube3d.com/sym-cyclohexaneboat/
k) *benzene	$\mathrm{D}_{6\mathrm{h}}$	https://www.chemtube3d.com/symbenzened6h/

- **Q6** On a sketch of borazine illustrate and label the symmetry elements of the D_{3h} point group
 - o put in the axial definition, note the z axis is coming out of the page in the first diagram because it has to align with the C_3 axis, **Figure 6**
 - o don't crowd your diagrams, use two or three if that will make things clear!

 σ_v planes lie perpendicular to the page and pass through the C_2 axes S_3 axis is coincident with the C_3 axis

Figure 6 symmetry elements sketched on a molecule of borazine