In-Class Problems / Self-study Problems / Test Preparation: Lecture 1 - In-Class P1 What is the principle axis for PCl₅? - o the principle axis is the highest Cn axis, ie the axis with the largest n, thus the C_3 axis is the principle axis Figure 1 PCl₅ rotation axes In-Class P2 Add the cartesian labels to the relevant axes shown on benzene in Figure 2 Figure 2 benzene rotation axes - In-Class P3 Determine the point group of NH₃ - o NH₃ is trigonal pyramidal - o symmetry elements for NH₃ are E, C₃, and $3\sigma_v$ planes, Figure 3 - o use the flow chart - 1. is the molecule linear? NO - 2. is the molecule T_d or O_h ? NO - 3. is there a principle C_n axis? YES (C_3 so n=3) Figure 3 symmetry elements NH₃ - 4. are there nC₂ perpendicular to the principle axis (ie 3C₂ axes)? NO - 5. is there a σ_h ? NO - 6. are there $n\sigma_v$? YES (n=3) - o therefor the point group of NH_3 is C_{3v} - Q1 find, draw and label all the rotation axes for the square planar [PtCl₄]²⁻ molecular ion - o see Figure 4 - o C₄ is the prinicple axis so defines the z-axis position - o C2 and C4 are coincident, ie in the same place - o there are two **types** of C₂ axis, ones that go through bonds and ones that go between bonds, different types of axis are labelled with single/double primes - o only the C₂' axes lie along cartesian axes Figure 4 rotation axes for [PtCl₄]²⁻ - Q2 find, draw and label all the rotation axes and reflection planes for the trigonal planar BH₃ molecule - o see Figure 5 - o diagrams must be clear, you don't need to fit all of the operations on a single diagram - o you can put some operations on a "side on" diagram and some on an "in-plane" diagram - o mirror planes can also be represented by a "partial" plane as shown Figure 5 mirror planes and rotation axes for BH₃ - Q3 identify the shape of the following molecules if they have a center of inversion, if the inversion point lies on an atom, identify that atom. (a)CO₂ (b)SiCl₄ (c) SF₆ (d) NH₃ (e) benzene - o (a) CO₂ is linear, yes, inversion point lies on the C atom - o (b) SiCl₄ is tetrahedral, no inversion point - o (c) SF₆ is octahedral, yes, inversion point lies on the S atom - o (d) NH₃ is trigonal pyramidal, no inversion point - o (e) benzene is hexagonal planar, yes, inversion point lies in the center of the ring - **Q4** determine the point group of BH₃ - o BH₃ is trigonal planar - o all of the symmetry elements are shown above in **Figure 5** - o use the flow chart - 1. is the molecule linear? NO - 2. are there 2 or more C_n n>2? NO - 3. is there a princile C_n axis? YES (C₃ so n=3) - 4. are there nC₂ perpendicular to the principle axis (ie 3C₂ axes)? YES - 5. is there a σ_h ? YES - o therefor the point group of the molecule is D_{3h} - **Q5** determine the point group of the following molecules (* = more challenging) | a) SH ₂ | C_{2v} | | |--|----------------------------|---| | b) CO ₂ | $D_{^{\infty}h}$ | | | c) POCl ₃ | C_{3v} | | | d) trans- N_2F_2 | C_{2h} | | | e) CCl ₄ | T_d | | | f) [PtCl ₄] ²⁻ | $\mathrm{D}_{4\mathrm{h}}$ | | | g) CHFClBr | \mathbf{C}_1 | | | h) hydrazine N ₂ H ₄ | C_2 | | | i) *cyclohexane (chair) | D_{3d} | https://www.chemtube3d.com/sym-d3dcyclohexane/ | | j) *cyclohexane (boat) | C_{2v} | https://www.chemtube3d.com/sym-cyclohexaneboat/ | | k) *benzene | $\mathrm{D}_{6\mathrm{h}}$ | https://www.chemtube3d.com/symbenzened6h/ | - **Q6** On a sketch of borazine illustrate and label the symmetry elements of the D_{3h} point group - o put in the axial definition, note the z axis is coming out of the page in the first diagram because it has to align with the C_3 axis, **Figure 6** - o don't crowd your diagrams, use two or three if that will make things clear! σ_v planes lie perpendicular to the page and pass through the C_2 axes S_3 axis is coincident with the C_3 axis Figure 6 symmetry elements sketched on a molecule of borazine