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Symmetry and Spectroscopy 
 

Prof. P. Hunt 
patricia.hunt@vuw.ac.nz 

web-site: http://www.huntresearchgroup.org.uk/teaching.html 
Rm 405 Laby 

Resources 
Web Resources: 
• information on my web-site under "Teaching" 

 
Figure 1 Image from my web-page 

Reading Resources: 
• Kieran C. Molloy, Group Theory for Chemists, Second edition, Woodhead 

Publishing, 2011, Cambridge 
o first edition is fine as well and is available electronically via the library 
o https://www.sciencedirect.com/book/9780857092403/group-theory-

for-chemists 
• PW Atkins and RS Friedman, Molecular Quantum Mechanics, Oxford 

University Press, Oxford 
o 4th or 5th edition are fine, both books are available in the Library 

Additional reading is IMPORTANT 
• Other books and optional reading is indicated over the duration of the course 
• Some of the additional material is background reading it will support the 

lectures, and some is to help those having problems with a particular section. 
• Some elective reading is advisable.  However do not attempt to read 

everything I suggest, but pick and choose! 
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Introduction 
Molecular Spectra 
• light incident on a sample can interact with the molecules within the sample, 

interrogating the spectra derived from this interaction provides information 
about the molecules. 

• The key relationship is hc/l =Ea-Eb where l=wavelength of the incident light 
(c is the speed of light and h is Planks constant), Ea/b are quantised energy 
levels of the molecule 
o frequency is f= c/l  (units s-1)  
o wavenumber is n=1/l in units cm-1 (ie not an SI unit) 

• light incident on the molecule is 
o absorbed and emitted immediately (rotational and vibrational spectra 

(IR) and UV-vis spectra) 
o transmitted (defining an objects colour) 
o reflected (reflectance spectra) 
o scattered (Raman spectra) 
o light can also be emitted some time later (fluorescence spectra) 
o valence or core electrons can be ejected (photoelectron spectra) 

• energy quantisation within a molecule has a very large range which cannot 
be spanned by a single source or detector.  Each type of interaction will 
occur over a very specific energy range. 

transition region ≈l  (nm ) ≈n (cm-1) ≈E (kJmol-1) 
pure rotational microwave 1-10*107 1-10 0.01-0.1 
ro-vibrational infrared (IR) 0.3-5*104 200-3500 2-42 
electronic UV-vis 300-700 1.4-3*104 170-400 

Table 1 Energy units and ranges for the various transitions 

 
Figure 2 schematic representation of  energy level quantisation in a diatomic molecule 

• in this short course we will consider only vibrational spectroscopies, 
however many of the basic principles are transferable to other types of 
spectroscopy 
o when light interacts with a molecule certain relationships, determined 

by symmetry (selection rules), must hold before a transition is allowed. 
o symmetry is a very important tool used in mathematics, chemistry and 

physics.  Symmetry it a key component of quantum mechanics. 
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o symmetry is used in solving the equations that allow us to compute the 
vibrational spectrum of a molecule, or to predict the electronic spectrum 
of a molecule (computational chemistry) 

o symmetry is used to label vibrations, to determine the ground and 
excited states of molecules, and to predict which transitions are 
possible. 

• we also look at the “bench top” employment of symmetry in the 
interpretation and prediction of spectra. 
o once something is known about the symmetry of a molecule, spectral 

features can be predicted (without resorting to extensive computations). 
o from the spectrum of an unknown compound, the symmetry and thus 

some of the structural features can be determined. 
o for example we may have the experimental spectrum of Pd(NH3)2Cl2 

and wish to identify which isomer is present.  Using symmetry we know 
the trans isomer (which has D2h symmetry) will exhibit a single Pd-Cl 
stretching vibration n(Pd-Cl) around 350 cm-1 while the cis isomer 
(which has C2v symmetry) will exhibit two stretching modes, Table 2 
and Figure 3.  

 M-X vibrations 
 IR Raman 

trans-isomer D2h b3u ag 
cis-isomer C2v a1, b2 a1, b2 

Table 2 Active M-X stretching modes for ML2X2 complexes 

 
Figure 3  IR spectra of cis and trans Pd(NH3)2Cl2  .1 

• we will explore the mathematical and physical foundations of the selection 
"rules" 
o for example the dipole moment must change before an IR vibration is 

allowed, and the polarizability must change before Raman scattering 
is allowed 

  

 
1 From Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th 
Edition (1997), John Wiley & Sons, New York, Part B, p10 Fig III-5. 
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Matrix Representation of Symmetry Operators 
Symmetry Operations, Elements and Operators 
• symmetry operations involve the 

"physical act" of moving a molecule 
o leave the initial and final states of the 

molecule indistinguishable.   
o only if we label the H atoms in 

Figure 4, do we see that Ha and Hb 
are exchanged under a C2 rotation. 

• each symmetry operation has an 
associated symmetry element, 
symmetry elements are the geometric 
object about which the operation is 
executed, thus they are: the axis, the 
plane, the point, Figure 5 
o n-fold rotation (Cn) rotation of 

(360/n)º around an n-fold rotation 
axis 

o reflection in a mirror plane, σv, σd or 
σh 

o inversion (i) takes a point at (x, y, z) 
to (-x,-y,-z) through the inversion 
point (i) 

o improper rotation (Sn) a rotation 
around an n-fold improper rotation 
axis (Sn)) followed by reflection in a 
plane (σh) perpendicular to the 
rotation axis. 

• each symmetry operation also has an 
associated mathematical operator the 
symmetry operator, which 
represents the physical act 
o for example the C2 operator 

represents the physical action of 
carrying out a 180º rotation 

o the operator allows us to write a 
mathematical equation for the action 
of the operation on a wavefunction or molecule, Figure 6 

o here the square brackets or parentheses are used to represent "action on" 
o this can be anything, molecule, atom, wavefunction, a banana or 

a vibration 

  
Figure 6 An operator acts on a wavefunction or a molecule 
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Figure 4 Symmetry operations vs 

elements 

 

Figure 5 Examples of different 
symmetry elements 
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The Matrix Representation of Symmetry Operators 
• symmetry operations can be represented by a matrix operator D(R)  

o D is for Darstellung=representation in German, R is for operation 
o these are operators in the same way the Hamiltonian is an operator 
o D(R) is determined by examining the effect of the operation on the 

quantity under consideration (the basis R) 
o R can be anything, atoms, vectors, a molecule or even a banana! 

• for example you might have already been introduced to the rotation operator 
as a matrix.  A rotation about the z-axis can be generated by the matrix 
shown in Figure 7 

 

 
Figure 7 The rotation matrices for an anticlockwise rotation 

• q takes on only specific values depending on the type of axis: 
C2 rotations q =0º and 180º  
C3 rotations q= 0º, 120º and 240º  
C4 rotations q= 0º, 90º, 180º and 270º 
and so on for other Cn operations 

• notice that the symmetry operator is quantised!  Symmetry and quantum 
numbers (n, l, s etc) are related.  Most rotation operators are quantised, 
however there are a few special symmetry operators that are continuous, for 
example the C∞ axis in C∞v or D∞h 

• we take our rotation matrix and operate on a vector, say v(x,y,z) and moving 
it to a new position v’(x’y’,z'), we write this as v’=Dv  
o the matrix representing the C2(z) operation is therefore D(C2(z)): 

 
Figure 8 The rotation matrix for a C2 rotation (q=p)

 • real life (macroscopic) applications are all around us! 
o every time you see an object rotating in an app, or an animation or in a 

computer game, the computer is number crunching through a series of 
rotation transformation matrices.  I have even found a whole book 
dedicated to just this topic “Matrix transformations for Computer Games 
and Animation” by John Vince, Springer-Verlag London, 2012 

o the matrices for rotation about the x-axis, y-axis and z-axis are used in 
flight dynamics, Rx is the roll, Ry is the pitch and Rz is the yaw, Figure 9 
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Figure 9 Graphic and the associated rotation matrices associated with pitch, roll and yaw. 2 

• to determine the matrix operator for a symmetry operation we work out what 
happens when the operation acts on each unit vector of a system (or atom) 

• consider for example operators for the O-atom of H2O in the C2v point group  
o E leaves the vectors unchanged, Figure 10 

 
Figure 10 matrix representation of the E operation under C2v 

o C2(z) leaves z unchanged (1), but rotates the x and y vectors which have 
the values (-1) in the matrix representation, Figure 11 

 
Figure 11 matrix representation of the C2(z) operation under C2v 

 
  

 
2 Image from:http://en.wikipedia.org/wiki/Flight_dynamics 
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Activity 
• draw the effect of the operation and determine the matrix representation for 

the sv(yz) and sv(xz) operations 

 

 
Figure 12 matrix representation of (a) sv(yz) and (b) sv(xz) operations under C2v 
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Some History 
• using a matrix to represent a symmetry operator is a particularly powerful 

way of understanding symmetry because it means that the wealth of 
experience we have in matrix algebra and matrix mechanics can be used to 
understand and manipulate symmetry operations. 

• Heisenberg (as well as producing the Heisenberg uncertainty principle) 
developed matrix mechanics.  Heisenberg, Figure 13, received the Nobel 
Prize in physics in 1932 when he was 31 "for the creation of quantum 
mechanics"! 

 
Figure 13 Werner Heisenberg3 

• Dirac noticed connections between Heisenberg's matrix mechanics and 
Schrödinger's wave mechanics (Figure 14) and reformulated the 
Schrödinger equation into a matrix notation, which has proven more 
powerful than that originally proposed by Schrödinger.  (He also introduced 
the bra-ket notation and the delta function.) 

    
Figure 14 Paul Dirac4 and  Erwin Schrödinger5 

• Paul Dirac and Erwin Schrödinger, shared the Nobel Prize in physics in 1933 
"for the discovery of new productive forms of atomic theory." 

The matrix formulation of symmetry and the Schrödinger equation 
were significant breakthroughs.  Both can now be treated together 
and on an equal footing! 

  
 

3 photo from the wikipedia web-site: http://en.wikipedia.org/wiki/Werner_Karl_Heisenberg 
4 photo from the wikipedia web-site: http://en.wikipedia.org/wiki/Paul_Dirac 
5 photo from the wikipedia web-site: http://en.wikipedia.org/wiki/Erwin_Schrödinger 
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Combining Symmetry Elements 
• for symmetry operators the method of combination is multiplication 
• for example C2(z)sv(xz){H2O}=sv(yz){H2O} 

o first consider the RHS, show the effect of sv(yz) acting on vectors of one 
H, Figure 15 

 
Figure 15 Symmetry operation 

o show the effect of the sv(xz) operation followed by C2(z), Figure 16: 

 
Figure 16 Sequential symmetry operations 

• the order of operations is important, and is not what you are used to 
o the operator sv(xz) acted on the object within the brackets first, 

C2(z)sv(xz){H2O} 
o and then C2(z) acts on the result of C2(z)[sv(xz){H2O}] 
o for symmetry operators and matrices start on the inside and work your 

way out 
• our result the shows that C2(z)sv(xz){H2O}=sv(yz){H2O} 

o normally the object is assumed and we write the expression as 
C2(z)sv(xz)=sv(yz) or just simply as C2sv=sv' 

o operating with C2sv has the same result as simply operating with sv' 
• how would we express this in a matrix formulation? 

o let us consider the operation C2(z)sv(xz){vector} and sv(yz){vector} 
o we have already worked out what these matrices look like 

 

 

Figure 17 multiplying matrices 
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• in the case of a matrix formulation we use matrix multiplication  
o thus we can achieve the same result by determining the product of matrix 

multiplication between C2(z)sv(xz): 

 
Figure 18 multiplying matrices 

• thus we have shown that: 
o not only are the symmetry operations related to matrices, but that simple 

algebra performed on operations is directly paralleled by similar algebra 
performed on matrices 

o this is an exceptionally powerful conclusion! 
• the symmetry operations of the C2v point group and the matrix 

representations of these symmetry elements are related, ie have a one-to-one 
relationship (the technical term is isomorphic) 

 
• the physical symmetry operations of a point group are directly related to the 

matrix representations of the symmetry operation 
o we can relate a symmetry operation (R) to a matrix representation, D(R) 
o we can mathematically manipulate the matrices and be confident that if we 

did the same thing physically we would get the same answer 
 

Activity 
• determine C2(z)sv(yz) using (a) diagrams (b) matrices and show that: 

o the operators: C2(z) sv(yz)=sv(xz) 
o and the matrices D(C2(z) )D(sv(yz))=D(sv(xz)) 
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Key Points 
• be able to list the different processes that occur when light is incident on a 

sample and be able to identify the related spectroscopic techniques  
• be able to draw a schematic representation of the energy levels associated 

with vibrational and electronic transitions, and to be able to identify the unit 
of measurement associated with each spectroscopy  

• be able to explain why symmetry is important 
• revision: be able to: 

o write a definition for, and distinguish between a "symmetry element", 
"symmetry operation" and "symmetry operator" 

o list the key symmetry elements and draw an example of each 
o determine the point group of a given molecule 
o draw clear diagrams showing symmetry elements on a molecule 

• be able to draw clear diagrams showing the action of a symmetry operations 
on a molecule 

• be able to generate the rotation matrices using trigonometry (cf Figure 7, 
Figure 8) 

• be able to generate the matrix representation of a symmetry operator for a 
given basis of Cartesian basis vectors (cf Figures 10-12) 

• be able to discuss the important relationship between physical operations and 
mathematical operators 

• be able to use diagrams and matrix mechanics to form symmetry operator 
and symmetry matrix products 

Self-Study Problems 
• using the set-up given in Figure 7 show that the components of the rotation 

matrix are x'=cos(θ)x-sin(θ)y and y'=sin(θ)x+cos(θ)y 
• determine  sv(yz)C2(z) using (a) diagrams and (b) matrices  
• compare	your	result	to	the	in-class	activity,	does	
sv(yz)C2(z)= C2(z)sv(yz)? 

 


